

ЦИРКУЛЯЦИОННЫЕ НАСОСЫ С «МОКРЫМ» РОТОРОМ

BASIC S MASTER S INSTANT BASIC/ MEGA PROMO

BASIC PRO MEGA S

Shinhoo

1.	Обзор циркуляционных насосов	3
2.	Циркуляционные насосы BASIC S Расшифровка типового обозначения насосого Области применения Условия эксплуатации Конструкция Спецификация материалов Перечень оборудования Габаритные размеры Расходно-напорные характеристики и технические данные	
3.	Hanayaguaayaha uzcachi INSTANT	11
Э.	Циркуляционные насосы INSTANT Расшифровка типового обозначения насосов	
	Области применения	11
	Условия эксплуатации	11
	Конструкция	12
	Расходно-напорная характеристика	13
	и технические данные	13
4.	Циркуляционные насосы BASIC/	
	BASIC PRO	14
	Расшифровка типового обозначения	14
	Области применения Условия эксплуатации	14 15
	Монтаж	16
	Перечень оборудования	18
	Расходно-напорные характеристики	
	и технические данные	19
	Габаритные размеры	23
5.	Автоматические циркуляционные насосы MASTER S Расшифровка типового обозначения насосов Области применения Условия эксплуатации Режимы управления Конструкция Перечень оборудования Габаритные размеры Расходно-напорные характеристики и технические данные	25
6.	Автоматические циркуляционные	е
		32
	Расшифровка типового обозначения Области применения	32 32
	Условия эксплуатации	33
	Конструкция	34
	Монтаж	34
	Режимы управления	36
	Перечень оборудования	40
	Расходно-напорные характеристики и технические данные	41
	Габаритные размеры	44
7.	Автоматические циркуляционные	2
7 ·		45
	Расшифровка типового обозначения	45
	Область применения	45
	Системы отопления	45
	Системы охлаждения	47 48
	Системы, использующие теплоту грунта Системы, использующие энергию солнца	48 48
	Режимы управления	49

	и технические данные	59
	r devogrio ridrioprible Adpartepherniki	
	Расходно-напорные характеристики	50
	Режимы работы	58
	Условия эксплуатации Конструкция	58
	Области применения Условия эксплуатации	56 58
	Расшифровка типового обозначения	58
	давления PROMO	58
8.	Компактные насосы повышени	я 58
	и технические данные Габаритные размеры	56 57
	Расходно-напорные характеристики	E 6
	Перечень оборудования	56
	Монтаж	55
	Условия эксплуатации	53
	Режимы управления	50
	Режимы работы	50

1. Обзор циркуляционных насосов

	MASTER S	BASIC S	BASIC N	MEGA	MEGA S	BASIC/ BASIC PRO	INSTANT	PROMO
Системы отопления	•	•	•	•	•	•		
Системы теплых полов	•	•	•	•	•	•		
Системы ГВС	•	•	•	•	•	•	•	
Системы вентиляциии кондиционирования	•	•	•	•	•	•		
Прямое повышение давления из магистрального трубопровода								•
Соответствие европейским требованиям по энергоэффективности EUP 2015	•			•	•			
Соответствие санитарно- эпидемиологическим и гигиеническим требованиям. Насос подходит для перекачивания питьевой воды	•	•	•	•	•	•	•	•

Условия снятия рабочих характеристик

Приведённые ниже указания действительны для рабочих характеристик, графики которых представлены далее в этом разделе.

- При снятии характеристик в качестве перекачиваемой жидкости использовалась дегазированная вода.
- Измерения рабочих характеристик насосов, рассчитанных на напряжение 1 x 230/240 B, выполнялись при температуре воды +20 °C.
- Все характеристики показывают приблизительные значения и не гарантируют фактическое наличие у насосов этих же самых рабочих характеристик. Если требуется обеспечить минимальное значение рабочей характеристики, необходимо провести индивидуальные исследования.
- Указанные расходно-напорные характеристики справедливы для кинематической вязкости, равной 1 мм²/с (1 сСт).
- Преобразование гидростатического напора H [м] в давление р [кПа] было выполнено для воды с плотностью $\rho=1000$ кг/м³. Для перекачиваемых жидкостей с другими показателями плотности, давление нагнетания берётся пропорционально плотности.

Краткое руководство по подбору насоса

Перед началом подбора насоса убедитесь, что следующие параметры отвечают условиям эксплуатации:

- качество и температура перекачиваемой жидкости;
- условия окружающей среды;
- минимальное давление всасывания;
- максимальное рабочее давление.

См. раздел «Условия эксплуатации».

Выбор типоразмера

Типоразмер насоса выбирается по следующим параметрам:

- требуемый максимальный расход в гидросистеме (Q);
- максимальные потери давления в гидросистеме (H).

Для того, что бы найти рабочую точку, необходимо обратиться к описанию конкретного типоразмера насоса.

По оси X отметить требуемый максимальный расход (Q), по оси Y - максимальные потери давления (H). См. рис. 1.

Примечание: для обеспечения наиболее энергоэффективной работы важно не выбрать насос избыточно большего типоразмера.

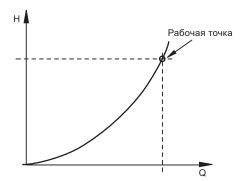


Рис. 1 Характеристика системы

Директивы о проектировании энергопотребляющей продукции (EuP)

Насосы MASTER S, MEGA, MEGA S обеспечивают оптимальное энергопотребление и отвечают требованиям Директивы о проектировании энергопотребляющей продукции (EuP) (Постановление совета (EC) № 641/2009), вступившей в силу 1 января 2013 года. Индекс энергоэффективности для насосов MASTER S (EEI) \leq 0,20, MEGA (EEI) \leq 0,23, MEGA S (EEI) \leq 0,23.

На диаграмме приведен индекс энергопотребления циркуляционного насоса Shinhoo MASTER S в сравнении с различными предельными значениями EEI.

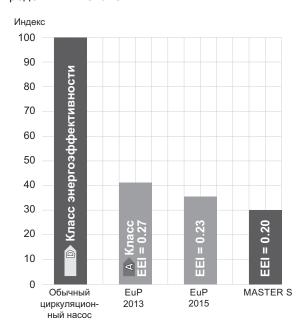


Рис. 2 Индекс энергопотребления

При индексе энергоэффективности (EEI), равном показателю EuP 2015, вы получите значительную экономию электроэнергии в сравнении с типичным циркуляционным насосом, что позволит довольно быстро окупить вложения на приобретение насоса.

L

2. Циркуляционные насосы BASIC S

Рис. 3 Внешний вид насоса BASIC S

Расшифровка типового обозначения насосов

BASIC S

Области применения

Насосы BASIC S используются для различных систем отопления (одно- или двухтрубных систем отопления, систем тёплых полов, в смесительных контурах больших систем отопления).

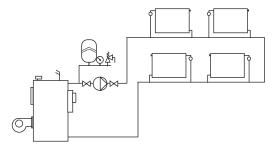


Рис. 4 Однотрубная система отопления

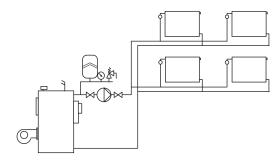


Рис. 5 Двухтрубная система отопления

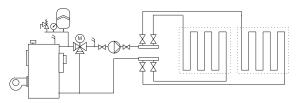


Рис. 6 Система «тёплых полов»

Условия эксплуатации

Перекачиваемые жидкости

Циркуляционные насосы BASIC S доступны для работы со следующими типами жидкостей:

- чистые, невязкие, неагрессивные и невзрывоопасные жидкости без твердых включений или волокон;
- охлаждающие жидкости без содержания минеральных масел;
- умягченная вода.

Кинематическая вязкость воды $U=1~\text{mm}^2/\text{C}$ (1 сСт) при 20 °С. При использовании циркуляционного насоса для перекачивания более вязкой жидкости снижаются рабочие характеристики гидравлической системы. Исключите добавки, способные оказать негативное воздействие на работу насоса. Подбор насоса необходимо осуществлять с учетом вязкости перекачиваемой жидкости.

Температура перекачиваемой жидкости

Допустимые температуры перекачиваемой жидкости от +2 до +110 °C.

Температура окружающей среды

Допустимая температура окружающей среды: от 0 до +40 °C.

Температура перекачиваемой жидкости всегда должна быть выше температуры окружающей среды. В противном случае в процессе работы насоса в статоре может образоваться конденсат, который выведет его из строя.

Температура хранения

Температура хранения: от -30 до +55 °C.

Максимальное давление системы

Насосы с соединениями (PN 10): 1,0 МПа (10 бар).

Давление на входе

Чтобы избежать возникновения кавитационного шума и повреждения подшипников насоса, должны быть обеспечены следующие минимальные значения давления на всасывающем патрубке:

Температура жидкости	≤85 °C	90 °C	110 °C
Давление на	6 м	7,5 м	15 м
входе	0,6 бар	0,75 бар	1,5 бар

Уровень звукового давления

Максимальный уровень звукового давления: 45 дБ(A).

Конструкция

Насосы BASIC S являются насосами с ротором, изолированным от статора герметичной гильзой, т. е. насос и электродвигатель образуют единый узел без уплотнений вала, в котором применяются всего лишь две уплотнительные прокладки. Подшипники смазываются перекачиваемой жидкостью (см. рис. 7).

Особенности этих насосов:

- радиальные подшипники из керамики;
- графитовый упорный подшипник;
- защитная гильза ротора и подшипниковая пластина из нержавеющей стали;
- рабочее колесо из композита, устойчивого к коррозии;
- корпус насоса из чугуна с катафорезным покрытием.

Насосы поставляются с трехскоростным исполнением электродвигателя.

Двух- или четырехполюсной асинхронный короткозамкнутый электродвигатель, соответствует ГОСТ Р 51317.6.2 и ГОСТ Р 51317.6.3.

Клеммная коробка легко открывается и снабжена зажимами для подключения кабеля. Кабельный ввод имеет уплотнение и приспособление для снятия механических напряжений в кабеле.

Кабельный ввод может выдвигаться наружу из направляющей втулки для облегчения монтажа.

Легкий доступ к клеммной коробке с компенсатором натяжения кабеля.

Электродвигатель соответствует Директиве по низковольтному напряжению.

Предусмотрены различные варианты расположения клеммных коробок с целью обеспечения правильного подсоединения кабеля.

Класс изоляции: Н.

Кабельное соединение: Pg 11 для кабелей от 5,6 ло 10 мм.

Электродвигатель не требует установки дополнительной внешней защиты и оснащён встроенной защитой от перегрева.

Спецификация материалов

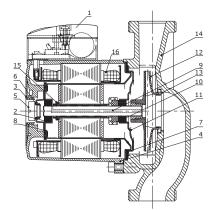


Рис. 7 Трехскоростной насос BASIC S

Поз.	Наименование	Материал
	Клеммная коробка	Композит PPE/PS
1	Крышка клеммной коробки	Композит PPE/PS
	Электрическая часть	Композит РЕТ
2	Радиальный подшипник	Керамика
3	Фирменная табличка	Композит
4	Корпус статора	Алюминий
4	Крышка обмоток статора	Композит РЕТ
5	Винт воздушного клапана	Никелированная латунь
6, 7	Уплотнение	Резина EPDM
8	Гильза ротора	Нержавеющая сталь
9	Наружная оболочка ротора	Нержавеющая сталь
10	Упорный подшипник	Графит
10	Уплотнение подшипника	Резина EPDM
11	Пластина подшипника	Нержавеющая сталь
12	Рабочее колесо	Композит PES/PP
13	Кольцо	Нержавеющая сталь
14	Корпус насоса	Чугун с катафорезным покрытием / Нержавеющая сталь
15	Стопорное кольцо	Композит PES
16	Промежуточное кольцо	Нержавеющая сталь

Монтаж

Циркуляционные насосы BASIC S должны быть надежно закреплены на месте эксплуатации для обеспечения их использования без опасности опрокидывания, падения или неожиданного перемещения.

Насос всегда должен устанавливаться так, чтобы вал электродвигателя находился в горизонтальном положении.

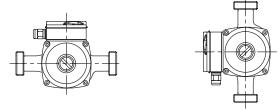
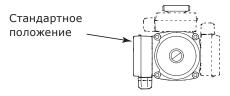



Рис. 8 Возможная ориентация вала

Возможно следующее положение клеммной коробки:

Рис. 9 Возможное положение блока управления для системы отопления

Перечень оборудования

Трехскоростные насосы BASIC S

Материал корпуса: чугун с катафорезным покрытием.

M	Присоединительный	Монтажная	Максимальный	Номинальная	Номинальный	Напряжение
Модель насоса	размер	длина, мм	расход, (м³/ч)	мощность, (Вт)	ток, (А)	230 B
BASIC S 15-6S	G 1"	130	3	70/60/50	0,3/0,26/0,23	•
BASIC S 25-4S		180	2,4	50/40/30	0,23/0,2/0,16	•
BASIC S 25-6S	C 1 1/2"	130	3	70/60/50	0,3/0,26/0,23	•
BASIC S 25-6S	G 1 1/2"	180	3	70/60/50	0,3/0,26/0,23	•
BASIC S 25-8S	1	180	6	180/175/130	0,8/0,78/0,58	•
BASIC S 32-4S		180	2,8	50/40/30	0,23/0,2/0,16	•
BASIC S 32-6S	G 2″	180	3,5	70/60/50	0,3/0,26/0,23	•
BASIC S 32-8S		180	8	180/175/130	0,8/0,78/0,58	•

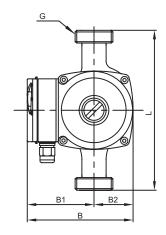
Трехскоростные насосы BASIC N

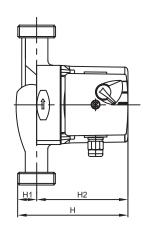
Материал корпуса: нержавеющая сталь.

M	Присоединительный	Монтажная	Максимальный	Номинальная	Номинальный	Напряжение
Модель насоса	размер	длина, мм	расход, (м³/ч)	мощность, (Вт)	ток, (А)	230 B
BASIC 15-4S N		130	3	65/50/32	0,28/0,22/0,15	•
BASIC 15-6S N	G 1"	130	3	100/70/55	0,45/0,35/0,25	•
BASIC 15-7S N		130	3,4	130/110/90	0,6/0,52/0,42	•
BASIC 25-4S N		180	3	65/50/32	0,28/0,22/0,15	•
BASIC 25-6S N	C 1 1/2"	180	3,4	100/70/55	0,45/0,35/0,25	•
BASIC 25-8S N	G 1 1/2"	180	6,1	180/175/130	0,8/0,78/0,58	•
BASIC 25-12 N		180	7	270/240/160	1,2/1,1/0,75	•

Резьбовые трубные соединения (комплект)

Рис. 10 Резьбовые трубные соединения (комплект)


В таблице указаны артикулы на один комплект. В комплект входит 2-е муфты, 2-е накидные гайки и 2-а уплотнительных кольца.


Наименование	Типоразмер насоса	Трубное присоединение	Муфта с внутренней резьбой	Материал	Артикул
Резьбовое трубное соединение (комплект) G 1"	BASIC S 15-xx BASIC N 15-xx	G 1" x Rp 3/4	Rp		55321001
Резьбовое трубное соединение (комплект) G 1 ½"	BASIC S 25-xx BASIC N 25-xx	G 1 ½" x Rp 1		Латунь	55321002
Резьбовое трубное соединение (комплект) G 2"	BASIC S 32-xx	G 2" x Rp 1 1/4			55321003

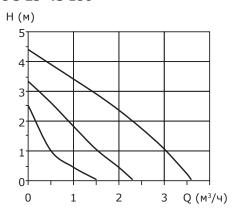
Резьбовое трубное соединение (комплект) входит в комплект поставки насосов BASIC S. При необходимости его можно заказать отдельно.

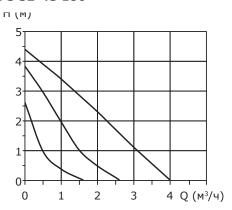
Габаритные размеры

Трехскоростные насосы BASIC S

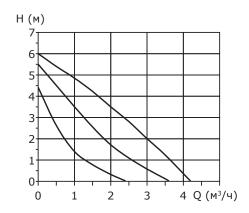
Модель насоса	L	B1	B2	В	H1	H2	н	G [дюйм]
BASIC S 15-6S	130	82	48	130	25	105	130	1"
BASIC S 25-4S	180	82	48	130	25	105	130	
BASIC S 25-6S	130	82	48	130	25	105	130	1 1/2"
BASIC S 25-6S	180	82	48	130	25	105	130	1 1/2
BASIC S 25-8S	180	92	58	150	30	130	160	
BASIC S 32-4S	180	82	48	130	25	105	130	
BASIC S 32-6S	180	82	48	130	25	105	130	2"
BASIC S 32-8S	180	92	58	150	40	130	170	

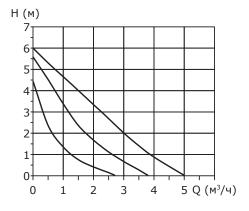
Трехскоростные насосы BASIC N

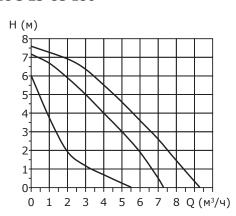

Модель насоса	L	B1	B2	В	H1	H2	н	G [дюйм]
BASIC 15-4S N	130	82	48	130	25	105	130	
BASIC 15-6S N	130	82	48	130	25	105	130	1"
BASIC 15-7S N	130	82	48	130	25	105	130	1
BASIC 25-4S N	180	82	48	130	25	105	130	
BASIC 25-6S N	180	82	48	130	25	105	130	1 1 / 2 "
BASIC 25-8S N	180	92	58	150	30	130	160	1 1/2"
BASIC 25-12 N	180	99	68	167	45	185	230	

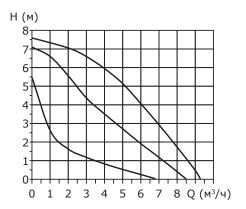

Расходно-напорные характеристики и технические данные

Hacocы BASIC S

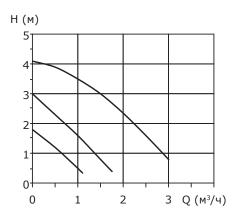

BASIC S 25-4S 180

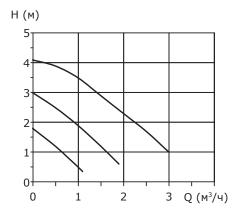

BASIC S 32-4S 180


BASIC S 25-6S 180/ BASIC S 25-6S 130/ BASIC S 15-6S 130

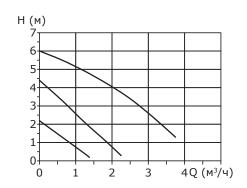

BASIC S 32-6S 180

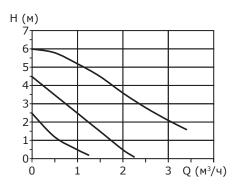
BASIC S 25-8S 180

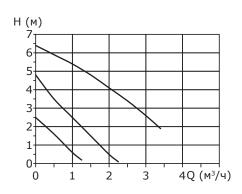

BASIC S 32-8S 180

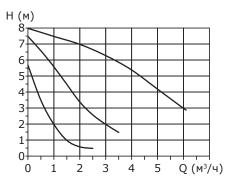

Shinhoo

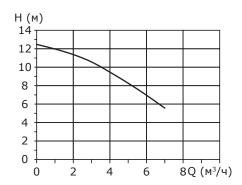
Hacocы BASIC N


BASIC 15-4S N 130


BASIC 25-4S N 180


BASIC 15-6S N 130


BASIC 25-6S N 180


BASIC 15-7S N 130

BASIC 25-8S N 180

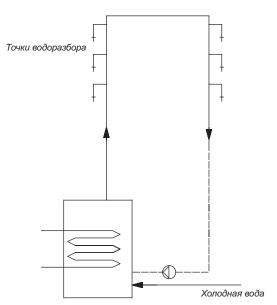
BASIC 25-12 N 180


3. Циркуляционные насосы INSTANT

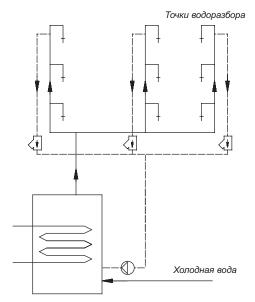
Рис. 11 Внешний вид насоса INSTANT 15-1.5 II BL

Расшифровка типового обозначения насосов

INSTANT



Области применения


Циркуляционные насосы INSTANT предназначены для циркуляции горячей воды в системах водоснабжения частных домов и квартир.

Насосы подходят для использования в открытых и закрытых системах. Предназначены монтажа внутри помещения.

Проточная часть этих насосов выполнена из коррозионностойкой латуни в целях защиты от химического контакта с перекачиваемой горячей водой. Насосы работают энергоэффективно и бесшумно благодаря современному двигателю на постоянных магнитах. Уменьшенная монтажная длина и компактные размеры этих насосов позволят встроить их в контур рециркуляции даже в самых тесных условиях. В случае необходимости разъёмная конструкция корпуса позволит без труда прочистить проточную часть насоса.

Рис. 12 Одноконтурная схема контура рециркуляции горячей воды

Рис. 13 Многоконтурная схема рециркуляции горячей воды

Условия эксплуатации

Перекачиваемые жидкости

- Чистые, невязкие, неагрессивные и невзрывоопасные жидкости без твердых включений или волокон.
- Охлаждающие жидкости без содержания минеральных масел.
- Бытовая горячая вода жесткостью макс. 14 °dH, макс. 110 °C.
- Умягченная вода.

Кинематическая вязкость воды $\upsilon=1~\text{мм}^2/\text{c}$ (1 сСт) при 20 °С. При использовании циркуляционного насоса для перекачивания более вязкой жидкости снижаются рабочие характеристики гидравлической системы.

Температура перекачиваемой жидкости

От +2 до +110 °C. Рекомендуется поддерживать температуру от 50 до 60 °C, чтобы свести к минимуму отложение известковых осадков и предотвратить появление легионеллы.

Температура окружающей среды и температура жидкости

Температура перекачиваемой жидкости всегда должна быть выше температуры окружающей среды. В противном случае в корпусе может образоваться конденсат.

Максимальное давление системы

Насосы с соединениями (PN 10): 1,0 МПа (10 бар).

Давление на входе

Чтобы избежать возникновения кавитационного шума и повреждения подшипников насоса, должны быть обеспечены следующие минимальные значения давления на всасывающем патрубке:

Температура 75 °C жидкости		90 °C	110 °C
Вход. давление	0,5 м	5 м	10,8 м
	0,049 бар	0,5 бар	1,08 бар

Конструкция

Конструкция насосов INSTANT позволяет отсоединить двигатель насоса от корпуса для упрощения проведения технического обслуживания. Подшипник ротора смазывается перекачиваемой жидкостью. Насосы имеют следующие характеристики:

- детали, находящиеся в контакте с перекачиваемой жидкостью, изолированы от статора, который находится в герметичном кожухе из нержавеющей стали;
- уменьшение трения в подшипнике и отсутствие люфта обеспечивает значительное снижение потребляемой мощности и шума.

Насосы INSTANT оснащены однофазными электродвигателями с постоянными магнитами, соответствующими ГОСТ Р 51317.6.2 и ГОСТ Р 51317.6.3.

Электродвигатель имеет защиту полного электрического сопротивления и тепловую защиту.

Для работы электродвигателя дополнительная защита не требуется.

Класс защиты: ІР 44.

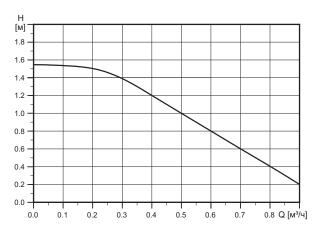
Класс нагревостойкости изоляции: Н.

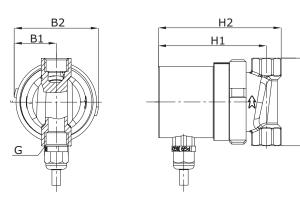
Монтаж

Циркуляционные насосы INSTANT должны быть надежно закреплены на месте эксплуатации для обеспечения их использования без опасности опрокидывания, падения или неожиданного перемещения.

Насос всегда должен устанавливаться так, чтобы вал электродвигателя находился в горизонтальном положении.

Для насосов INSTANT недопустимо положение, когда электрический разъем находится сверху. Для удаления воздуха из системы, в которую установлен насос INSTANT, необходимо:


- 1. Включить насос, затем открыть кран.
- 2. Выключить насос, закрыть кран.
- 3. Повторить п.п. 1, 2 пять раз.



Расходно-напорная характеристика и технические данные INSTANT 15-1.5 II BL

1 х 230 В, 50 Гц

Монтажная длина: 80 мм

0,08

Технические данные

Давление в гидросистеме:

ление в гидросиетелен

Температура

перекачиваемой жидкости: от +2 д

Макс. 10 бар

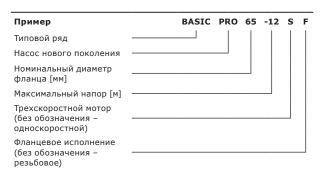
от +2 до +110 °C

(TF 110)

	Размеры [мм]							
Тип насоса	L1	H1	H2	B1	В2	RP [дюйм]		
INSTANT 15-1.5 II BL	80	99	112	38	77	1/2		

4. Циркуляционные насосы BASIC/BASIC PRO

Рис. 14 Внешний вид насоса BASIC/BASIC PRO


Области применения

Циркуляционные насосы BASIC/BASIC PRO для циркуляции холодной и горячей воды в системах отопления и кондиционирования воздуха. Насос имеет три частоты вращения для выбора оптимальной производительности насоса для данной гидросистемы.

Максимальное давление 6/10 бар в гидросистеме.

Температура от +2 до +110 °C перекачиваемой жидкости.

Расшифровка типового обозначения

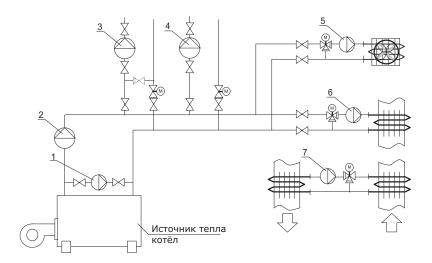


Рис. 15 Схема системы отопления и теплоснабжения

- 1. Насос котлового контура;
- 2. Насос первичного контура;
- 3. Насос в однотрубных и двухтрубных системах отопления;
- 4. Насос греющий контур системы горячего водоснабжения;
- 5. Насос теплоснабжение в системах воздушного отопления;
- 6. Насос в системах отопления «тёплый пол»;
- 7. Системы регенерации и рекуперации тепла.

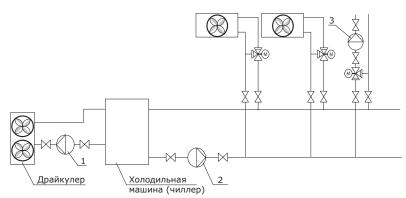


Рис. 16 Схема системы охлаждения и кондиционирования воздуха

- 1. Насос контура конденсатора и драйкулера;
- 2. Насос контура потребителей (фанкойлы)
- 3. Насос систем холодоснабжения центральных кондиционеров

Условия эксплуатации

Перекачиваемые жидкости

Насос предназначен для перекачивания чистых, неагрессивных жидкостей, не содержащих твёрдых включений или волокон, которые могут оказывать механическое или химическое воздействие на насос.

В отопительных системах вода должна удовлетворять требованиям норм качества сетевой воды для отопительных агрегатов, например, СО 153-34.20.501-2003.

Запрещается использовать насосы для перекачивания легковоспламеняющихся или взрывчатых жидкостей, таких как дизельное топливо и бензин. Запрещается использование насоса для перекачки агрессивных жидкостей, таких как кислоты и морская вода.

Если насос в холодное время не эксплуатируется, нужно принять необходимые меры для предотвращения повреждений от воздействия низких температур.

Добавление в теплоноситель присадок с плотностью и/или кинетической вязкостью выше, чем у воды, снижает производительность насоса.

Запрещается использовать примеси, которые могут отрицательно повлиять на работу насоса.

Подходит насос для конкретной жидкости или нет, зависит от нескольких факторов, наиболее важные из которых: содержание извести, значение pH, температура и содержание растворяющих веществ и масел.

Насос может применяться для перекачивания растворов этиленгликоля и воды в концентрации до 50 %. Перекачивание смесей этиленгликоля ухудшает гидравлические характеристики насоса.

Предельно допустимые значения температуры

Насос имеет три частоты вращения для выбора оптимальной производительности насоса для данной гидросистемы.

Температура окружающей среды	от 0 до 40 °C
Температура перекачиваемой жидкости	от +2 до +110 °C
Температура хранения	от -30 до +55 °C

В зависимости от назначения насоса максимально допустимое значение температуры перекачиваемой жидкости может ограничиваться местными правилами.

Относительная влажность воздуха	макс. 95 %
Номинальное рабочее давление в системе	PN6/PN10
Жидкость, используемая при испытаниях	вода при температуре +20°C с антикоррозионной присадкой

Давление на входе

Чтобы избежать кавитации, необходимо поддерживать минимальное давление на входе насоса. Значения минимально допустимого давления указаны в следующей таблице:

BASIC

	Темпе	ратура жид	кости
Модельный ряд	70 °C (6ap)	90 °C (бар)	110 °C (бар)
BASIC 25-12S	0,4	0,75	1,4
BASIC 25-16	0,8	1,1	1,7
BASIC 25-20	0,7	0,95	1,6

BASIC PRO

	Темпе	ратура жид	кости
Модельный ряд	70 °C (6ap)	90 °C (бар)	110°С (бар)
BASIC PRO 32-8SF	0,35	0,75	1,2
BASIC PRO 32-12S	0,4	0,75	1,4
BASIC PRO 32-12SF	0,4	0,75	1,4
BASIC PRO 40-14F	0,35	0,75	1,15
BASIC PRO 40-14SF	0,35	0,75	1,15
BASIC PRO 40-18F	0,4	0,75	1,4
BASIC PRO 40-18SF	0,4	0,75	1,4
BASIC PRO 50-12F	0,4	0,75	1,4
BASIC PRO 50-12SF	0,4	0,75	1,4
BASIC PRO 50-16F	0,35	0,75	1,35
BASIC PRO 50-16SF	0,35	0,75	1,35
BASIC PRO 50-20F	0,85	1	1,6
BASIC PRO 50-20SF	0,85	1	1,6
BASIC PRO 65-8F	0,45	0,75	1,2
BASIC PRO 65-8SF	0,45	0,75	1,2
BASIC PRO 65-12F	0,7	1	1,7
BASIC PRO 65-12SF	0,7	1	1,7
BASIC PRO 65-18SF	0,7	1	1,7
BASIC PRO 80-10SF	0,7	1	1,7
BASIC PRO 80-14SF	0,7	1	1,7

Уровень звукового давления BASIC

Модельный ряд	Уровень шума, дБа
BASIC 25-12S	≤ 50
BASIC 25-16	≤ 50
BASIC 25-20	≤ 50

BASIC PRO

Модельный ряд	Уровень шума, дБа
BASIC PRO 32-8SF	≤ 50
BASIC PRO 32-12S	≤ 50
BASIC PRO 32-12SF	≤ 50
BASIC PRO 40-14F	≤ 45
BASIC PRO 40-14SF	≤ 45
BASIC PRO 40-18F	≤ 48
BASIC PRO 40-18SF	≤ 48
BASIC PRO 50-12F	≤ 48
BASIC PRO 50-12SF	≤ 48
BASIC PRO 50-16F	≤ 50
BASIC PRO 50-16SF	≤ 50
BASIC PRO 50-20F	≤ 52
BASIC PRO 50-20SF	≤ 52
BASIC PRO 65-8F	≤ 48
BASIC PRO 65-8SF	≤ 48
BASIC PRO 65-12F	≤ 50
BASIC PRO 65-12SF	≤ 50
BASIC PRO 65-18SF	≤ 48
BASIC PRO 80-10SF	≤ 50
BASIC PRO 80-14SF	≤ 52

Монтаж

Насос должен устанавливаться так, чтобы вал электродвигателя располагался горизонтально.

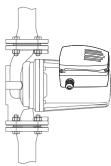
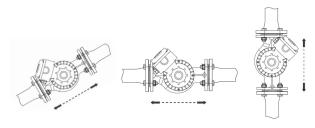



Рис. 17 Положение вала электродвигателя

Рис. 18 Возможные положения клеммной коробки

Внешний импульсный переключатель

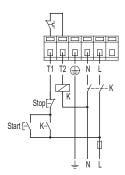


Рис. 19 Однофазный

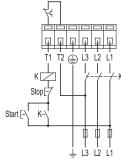


Рис. 20 Трехфазный без нейтрального провода

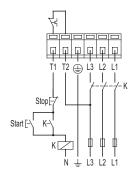


Рис. 21 Трехфазный с нейтральным проводом

Подключение электрооборудования

Насос должен подключаться к электросети через внешний контактор. Выключатель должен быть соединен со встроенным тепловым реле насоса, предназначенным для защиты электродвигателя от перегрузки в каждом из трех диапазонов частоты вращения.

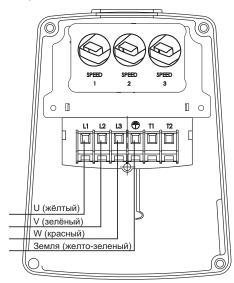


Рис. 22 Модуль переключения частоты вращения

Параметры электрооборудования

Напряжение питания и частота тока	1 x 220-240 B, 50 Гц 3 x 400-415 B, 50 Гц
Защита электродвигателя	Требуется внешняя защита электродвигателя
Класс защиты	IP44
Класс теплостойкости изоляции	Н

Подключение электрооборудования и защитных устройств должно выполняться в соответствии с местными нормами и правилами.

Подключение системы заземления или нейтрали может выполняться для защиты от случайного прикосновения. В качестве дополнительной защиты можно использовать автомат защитного отключения тока или напряжения замыкания на землю.

Ни в коем случае не выполняйте какие либо подключения в клеммной коробке насоса до тех пор, пока не будет отключено напряжение питания.

Насос должен быть заземлен и подключен к внешнему выключателю сетевого электропитания.

Рабочее напряжение и частота тока указаны на фирменной табличке насоса с его номинальными данными электрооборудования. Необходимо убедиться в том, что параметры электродвигателя соответствуют параметрам электросети, к которой он будет подключаться. Насос должен быть подключен к сети через внешний пускатель. У однофазных моделей насосов электродвигатель оснащён встроенным тепловым реле. Встроенное тепловое реле отключает насос при достижении обмотками температуры 175 °C и автоматически включает его после охлаждения. Дополнительная защита электродвигателя не требуется.

Электродвигатели трехфазных насосов оснащены встроенным тепловым реле, контакты которого выведены на клеммную колодку и должны подключаться к внешним устройствам защиты. Внешний пускатель следует соединить через клеммы T1 и T2.

Внимание: если электродвигатель насоса защищен с помощью пускателя, то пускатель должен быть отрегулирован на максимальный потребляемый ток при эксплуатации на данной частоте. Установка пускателя должна корректироваться при каждом изменении эксплуатационной частоты вращения электродвигателя. Значения тока, потребляемого при различных частотах вращения, указаны на фирменной табличке насоса.

Конструкция

Насосы BASIC/BASIC PRO являются насосами с изолированным защитной гильзой ротором, т.е. насос и электродвигатель образуют единый узел без уплотнения вала. В этом узле применяются всего два уплотнительных кольца, а подшипники смазываются перекачиваемой жидкостью.

Преимущества конструкции насосов BASIC/BASIC PRO:

- Электродвигатель с одной либо тремя скоростями.
- Керамические радиальные подшипники.
- Графитовый упорный подшипник.
- Защитная гильза, наружная оболочка ротора и подшипниковая пластина изготовлены из нержавеющей стали.
- Корпус насоса из чугуна с катафорезным покрытием.

Перечень оборудования

BASIC

Модель	Присоедини- тельный	Исполнение	Монтажная	Максимальный	Максимальный	Номинальная	Номинальный	Напря	жение
насоса	размер	фланцев	длина, мм	расход, (м³/ч)	напор, (м)	мощность, (Вт)	ток, (А)	230 B	380 B
BASIC 25-12S	G 1 ½"	-	180	4	11,9	270 / 240 / 160	1,2 / 1,1 / 0,75	•	
BASIC 25-16	G 1 ½"	-	230	11	15,6	700	3,4	•	
BASIC 25-20	G 1 ½"	-	230	12	19,7	1000	4,9	•	

BASIC PRO

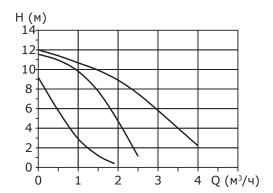
Модель	Присоедини-	Исполнение	Монтажная	Максимальный	Максимальный	Номинальная	Номинальный	Напря	жение
насоса	тельный размер	фланцев	длина, мм	расход, (м³/ч)	напор, (м)	мощность, (Вт)		230 B	380 B
BASIC PRO 32-12S	G 2"	-	180	9,3	12	500 / 460 / 440	2,5 / 2,3 / 2	•	
BASIC PRO		PN6	200	8	8,1	245 / 190 / 135	11/005/060	_	
32-8SF	DN32	PINO	200	٥	0,1	245 / 190 / 135	1,1 / 0,85 / 0,60	•	
BASIC PRO 32-12SF	DNSZ	PN6	220	9,3	12	500 / 460 / 440	2,5 / 2,3 / 2	•	
BASIC PRO 40-14F		PN10	250	11,6	14,3	700	3,55	•	
BASIC PRO 40-14SF		PN10	250	14	14,2	700 / 580 / 500	2.05 / 1.03 / 0.87		•
BASIC PRO 40-18F	DN40	PN10	250	13,6	18,1	1000	4,9	•	
BASIC PRO 40-18SF		PN10	250	16,5	17,2	1000 / 770 / 670	2,3 / 1,3 / 1,2		•
BASIC PRO 50-12F		PN10	280	30	12,3	1000	4,9	•	
BASIC PRO 50-12SF		PN10	280	24	13,1	1000 / 770 / 670	2,3 / 1,3 / 1,2		•
BASIC PRO 50-16F		PN10	280	26	16,2	1300	6	•	
BASIC PRO 50-16SF	DN50	PN10	280	34	16,4	1300 / 1000 / 930	3,05 / 1,75 / 1,6		•
BASIC PRO 50-20F		PN10	280	21	19,5	1300	5,8	•	
BASIC PRO 50-20SF		PN10	280	36	17,7	1500 / 1250 / 1100	3,5 / 2,05 / 1,85		•
BASIC PRO 65-8F		PN10	340	30	8,7	700	3,55	•	
BASIC PRO 65-8SF		PN10	340	26	8,4	700 / 580 / 500	2,05 / 1,03 / 0,87		•
BASIC PRO 65-12F	DN65	PN10	340	40	11,9	1300	6		
BASIC PRO 65-12SF		PN10	340	38	12,6	1300 / 1000 / 930	3,05 / 1,75 / 1,6		•
BASIC PRO 65-18SF		PN10	340	39	17,2	1800 / 1450 / 1350	3,6 / 2,37 / 2,27		•
BASIC PRO 80-10SF		PN10	360	39	12,3	1300 / 1000 /	3,05 / 1,75 / 1,6		•
BASIC PRO 80-14SF	DN80	PN10	360	42	13,8	1500 / 1250 / 1100	3,5 / 2,05 / 1,85		•

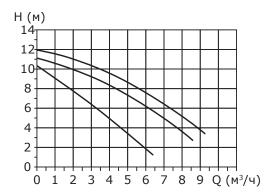
Резьбовые трубные соединения (комплект)

Рис. 23 Резьбовые трубные соединения (комплект)

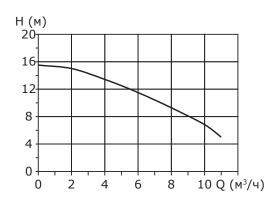
В таблице указаны артикулы на один комплект. В комплект входит 2-е муфты, 2-е накидные гайки и 2-а уплотнительных кольца.

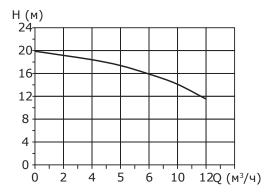
Наименование	Типоразмер насоса	Трубное присоединение	Муфта с внутренней резьбой	Материал	Артикул
Резьбовое трубное соединение (комплект) G 1 ½"	BASIC 25-xx	G 1 ½" x Rp 1	Rp		55321002
Резьбовое трубное соединение (комплект) G 2"	BASIC PRO 32-xx	G 2" x Rp 1 1/4		Латунь	55321003


Резьбовое трубное соединение (комплект) входит в комплект поставки насосов BASIC/BASIC PRO с резьбовым присоединением. При необходимости его можно заказать отдельно.

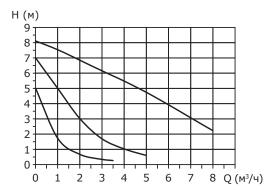

Расходно-напорные характеристики и технические данные

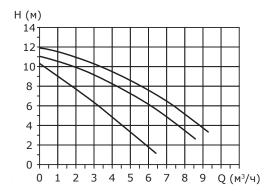
Hacocы BASIC/BASIC PRO с резьбовым присоединением


BASIC 25-12S 180, 1x230 B

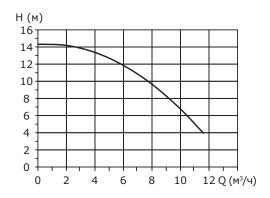

BASIC PRO 32-12S 180, 1x230 B

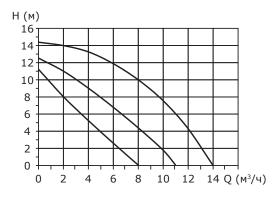
BASIC 25-16 230, 1x230 B

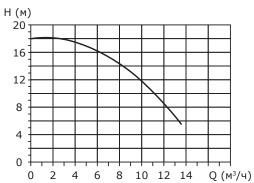

BASIC 25-20 230, 1x230 B



Hacocы BASIC/BASIC PRO с фланцевым присоединением

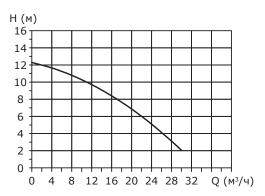

BASIC PRO 32-8SF, 1x230 B


BASIC PRO 32-12SF, 1x230 B

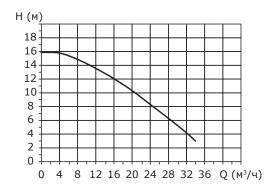

BASIC PRO 40-14F, 1x230 B

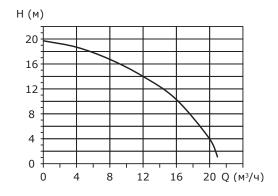
BASIC PRO 40-14SF, 3x380 B

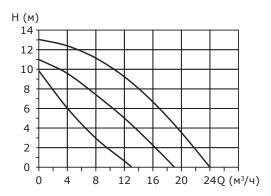
BASIC PRO 40-18F, 1x230 B

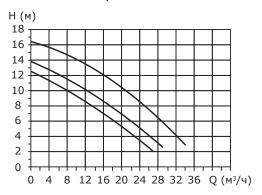


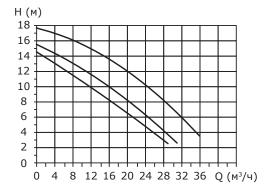
BASIC PRO 40-18SF, 3x380 B




BASIC PRO 50-12F, 1x230 B

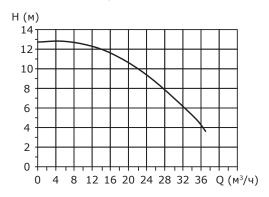

BASIC PRO 50-16F, 1x230 B


BASIC PRO 50-20F, 1x230 B

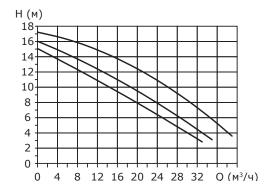

BASIC PRO 50-12SF, 3x380 B

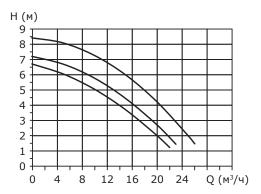
BASIC PRO 50-16SF, 3x380 B

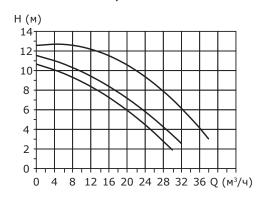
BASIC PRO 50-20SF, 3x380 B

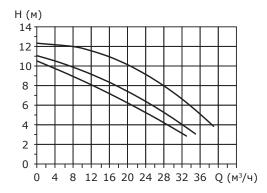


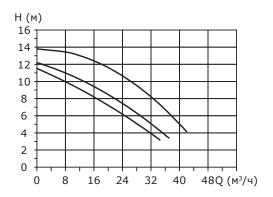
Shinhoo


BASIC PRO 65-8F, 1x230 B

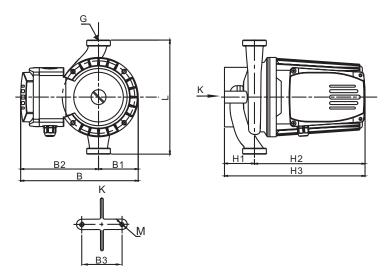

BASIC PRO 65-12F, 1x230 B


BASIC PRO 65-18SF, 3x380 B

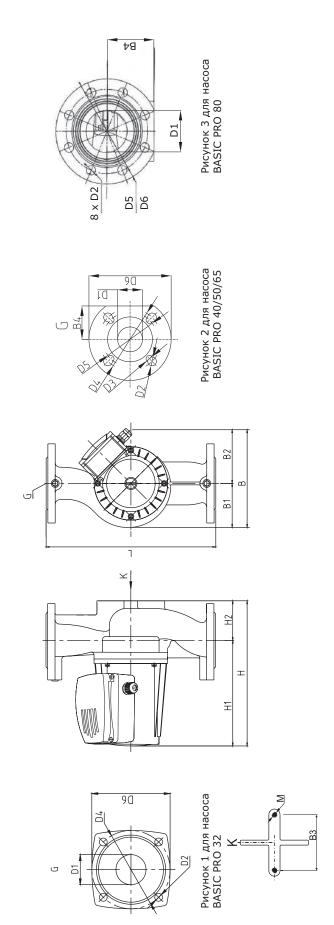

BASIC PRO 65-8SF, 3x380 B


BASIC PRO 65-12SF, 3x380 B

BASIC PRO 80-10SF, 3x380 B



BASIC PRO 80-14SF, 3x380 B



Габаритные размеры

Модель насоса	L	В	B1	B2	В3	H1	H2	НЗ	м	G [дюйм]
BASIC 25-12S	180	150	92	58	-	23	128	151	-	
BASIC 25-16	230	234	154	80	80	54	232	286	M10	1 1/2"
BASIC 25-20	230	234	154	80	80	54	232	286	M10	
BASIC PRO 32-12S	180	167	68	99	70	49	185	234	M8	2"

Shinhoo

			Pasi	Размеры насоса [мм]	соса [мм	_					Разм	еры фл	Размеры фланца [мм]	Ē			Присоединение	Масса [кг]	[kr]
модель насоса	H1	Н2	I	7	В	B1	B2	B3	B4	D1	D2	D3	D4	DS	9Q	Σ	DN	Нетто	Брутто
BASIC PRO 32-8SF	130	55	185	200	150	58	95			40	11,5		06		06		2010	5,8	7,4
BASIC PRO 32-12SF	185	49	234	220	167	89	66	,		40	11,5		06		06		DINSZ	6,3	10,9
BASIC PRO 40-14F	230	73	303	250	243	98	157	80	64	40	17,5	13,5	110	100	150			15,3	18,4
BASIC PRO 40-14SF	232	65	297	250	234	80	154	80	62,5	40	17,5	13,5	110	100	150		2	15,3	18,4
BASIC PRO 40-18F	230	73	303	250	243	98	157	80	64	40	17,5	13,5	110	100	150		0440	18	20
BASIC PRO 40-18SF	232	65	297	250	234	80	154	80	62,5	40	17,5	13,5	110	100	150			16,9	20
BASIC PRO 50-12F	247	73	320	280	254	97	157	06	72	20	17,5	13,5	125	110	165			17,6	22,4
BASIC PRO 50-12SF	232	72	304	280	242	88	154	06	75	20	17,5	13,5	125	110	165			17,5	22,4
BASIC PRO 50-16F	257	72	329	280	242	88	154	06	72	20	17,5	13,5	125	110	165			19,6	24,4
BASIC PRO 50-16SF	273	73	346	280	239	82	157	06	72	20	17,5	13,5	125	110	165	2	OCNIA	19,6	24,4
BASIC PRO 50-20F	257	72	329	280	242	88	154	06	72	20	17,5	13,5	125	110	165	OTL		19,8	24,6
BASIC PRO 50-20SF	293	73	366	280	253	96	157	06	72	20	17,5	13,5	125	110	165			19,8	24,6
BASIC PRO 65-8F	232	78	310	340	242	88	154	06	92	65	17,5	13,5	145	130	185			18,2	21,7
BASIC PRO 65-8SF	256	82	338	340	253	96	157	06	92	65	17,5	13,5	145	130	185			21,5	26,5
BASIC PRO 65-12F	257	78	335	340	247	93	154	06	92	65	17,5	13,5	145	130	185		DN65	21,5	26,5
BASIC PRO 65-12SF	256	82	338	340	253	96	157	06	92	65	17,5	13,5	145	130	185			21,5	26,5
BASIC PRO 65-18SF	277	82	359	340	265	100	165	06	92	65	17,5	13,5	145	130	185			21,8	26,8
BASIC PRO 80-10SF	267	88	355	360	265	108	157	06	92	80	18	1	160	1	200		0000	24,1	29,1
BASIC PRO 80-14SF	267	88	355	360	265	108	157	06	92	80	18	-	160	1	200		DINOU	24,4	29,4

5. Автоматические циркуляционные насосы MASTER S

Рис. 24 Внешний вид насосов MASTER S

Расшифровка типового обозначения насосов

MASTER S

Пример	MASTER S 25	-4	180
Типовой ряд			
Номинальный диаметр всасывающего и напорного патрубков (DN), [мм]			
Максимальный напор [м]	-		
Монтажная длина [мм]			

Области применения

Циркуляционный насос MASTER S предназначен для обеспечения циркуляции воды или гликольсодержащих жидкостей в отопительных системах, системах отопления «теплый пол», системах кондиционирования воздуха и охлаждения. Системами охлаждения называются системы, в которых температура перекачиваемой жидкости ниже температуры окружающей среды.

Hacoc MASTER S идеально подходит для:

- Систем с погодозависимой автоматикой, в которых целесообразно оптимизировать положение рабочей точки насоса;
- Систем с переменными значениями температуры в напорном трубопроводе.

Hacoc MASTER S автоматически регулирует создаваемое давление в системе в соответствии с фактической потребностью системы.

Автоматический режим работы насоса подходит для работы во всех типах контуров системы отопления: одно- и двухтрубных радиаторных контурах, контурах с «тёплым полом» и контурах загрузки бойлера.

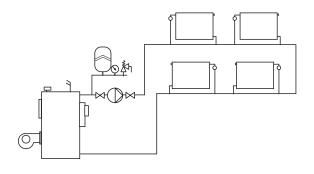


Рис. 25 Однотрубная система отопления

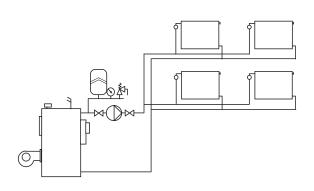


Рис. 26 Двухтрубная система отопления

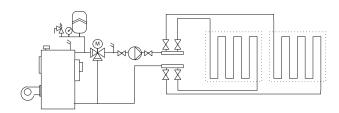


Рис. 27 Система «тёплых полов»

Ниже приведена таблица приблизительного подбора типа насоса для системы отопления.

Площадь дома [м²]	Расход в системе отопления при Δt = 20 °C [м³/ч]	Расход в системе теплого пола при Δt = 5 °C [м³/ч]	Тип насоса
80-120	0,4	1,5	XX-4
120-160	0,5	2,0	XX-6
160-240	0,7	2,5	XX-7,5
240-280	0,9	3,0-3,5	XX-7,5

Приведенные рекомендации даны для информации.

Условия эксплуатации

Перекачиваемые жидкости

Циркуляционный насос MASTER S доступен для работы со следующими типами жидкостей:

- чистые, невязкие, неагрессивные, невоспламеняющиеся и невзрывоопасные жидкости без твердых включений или волокон:
- охлаждающие жидкости без содержания минеральных масел;
- умягченная вода.

Кинематическая вязкость воды $\upsilon=1$ мм²/с (1 сСт) при 20 °С. При использовании циркуляционного насоса для перекачивания более вязкой жидкости снижаются рабочие характеристики гидравлической системы. Исключите добавки, способные оказать негативное воздействие на работу насоса. Подбор насоса необходимо осуществлять с учетом вязкости перекачиваемой жидкости.

Технические данные

Напряжение питания	1x230 B ±10 %, 50 Гц, PE
Защита двигателя	Насос не требует дополнительной внешней защиты двигателя
Степень пыле-влагозащиты	IP44
Класс температурной стойкости изоляции	н
Относительная влажность воздуха	Макс. 95 %
Температура окружающей среды	От 0 до +70 °C
Уровень шума	≤ 45 дБ(А)
Температурный класс	TF110
Давление в системе	Максимально 1,0 МПа (10 бар)
Температура перекачиваемой жидкости	-30 +110 °C

Давление на входе

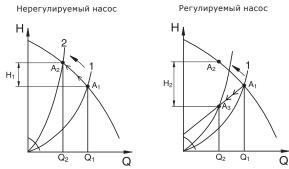
Чтобы избежать возникновения кавитационного шума и повреждения подшипников насоса, должны быть обеспечены следующие минимальные значения давления на всасывающем патрубке:

Температура жидкости	· · · \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		110 °C
D	0,5 м	2,8 м	10,0 м
Вход. давление	0,05 бар	0,28 бар	1 бар

Режимы управления

Потребность в интенсивности отопления каждой комнаты постоянно меняется и значительно зависит от солнечной активности, времени суток, а также от индивидуальных особенностей отапливаемых помещений.

Из-за этих причин, нерегулируемый насос, не имея возможности адаптироваться к изменяющимся условиям, работает неэффективно.


Возможные последствия при использовании нерегулируемых насосов:

- избыточное давление в системе;
- шум в термостатических головках;
- необходимость в ручном контроле системы отопления;

• избыточное потребление электроэнергии.

Регулируемые насосы, оснащенные преобразователем частоты и встроенным программным обеспечением, способны оценить фактический запрос системы и автоматически подстраиваться под изменяющиеся условия.

Сравнение принципа работы нерегулируемого насоса с регулируемым иллюстрируют следующие графики:

Рис. 28 Изменение положения рабочей точки регулируемого и нерегулируемого насоса

Если в системе установлен нерегулируемый насос, то при закрытии термостатического вентиля перепад давления на нем увеличивается из-за роста напора насоса в области малой производительности. Этот выросший перепад давления на вентиле приводит к местному увеличению скорости воды, что в свою очередь вызывает неприятный кавитационный шум. Если в системе будет установлен насос MASTER S, напор перед вентилем будет падать при уменьшении подачи насоса, то есть причина возникновения шума будет устранена, а подача теплоносителя будет соответствовать реальной потребности системы. Также благодаря снижению напора насос MASTER S снижает потребление электроэнергии.

Смена режима управления осуществляется кнопкой, расположенной на панели управления.

Режимы управления	Описание	
	Насос анализирует систему отопления и затем, на основе результатов анализа, выбирает наилучшую рабочую прямую пропорционального давления.	Mar
Автоматический режим работы AUTO.	Производительность насоса будет изменяться по подобранной прямой, всегда адаптируясь к фактической нагрузке на систему отопления.	
	Выбор насосом прямой осуществляется из неограниченного числа прямых в диапазоне AUTO (закрашенная область на графике).	The second secon
	Данный режим управления рекомендуется для двухтрубных систем отопления.	
Поддержание пропорционального давления. РР1, РР2, РР3.	Производительность насоса изменяется по прямой пропорционального давления, адаптируясь к фактической нагрузке на систему отопления. Данный режим управления рекомендуется для двухтрубных систем отопления.	
Поддержание постоянного давления. СР1, СР2, СР3.	Производительность насоса изменяется по прямой постоянного давления, адаптируясь к фактической нагрузке на систему отопления. Для систем «тёплый пол» и однотрубных систем отопления.	H
Фиксированная скорость вращения. C1, C2, C3.	Насос работает по вручную выбранной кривой фиксированной скорости вращения, не адаптируясь к фактической нагрузке системы отопления. В режиме фиксированной скорости вращения насос работает аналогично нерегулируемым насосам.	H
шим.	В этом режиме работы скорость вращения рабочего колеса насоса будет зависеть от значения входного сигнала ШИМ. Скорость вращения обратно пропорциональна значению входного сигнала ШИМ. При значении сигнала ШИМ меньшего или равного 10 скорость вращения рабочего колеса насоса будет максимальной.	

Режим управления по ШИМсигналу

Насосом MASTER S можно управлять с помощью внешнего контроллера. Для этого используется режим управления по ШИМ-сигналу.

Управляющий ШИМ-сигнал

После подключения MASTER S к контролеру насос будет изменять скорость вращения своего вала в зависимости от принимаемого значения рабочего цикла сигнала ШИМ. График зависимости приведён на рис. 29.

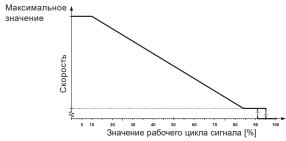


Рис. 29 Профиль управляющего ШИМ-сигнала

Рабочий цикл [%]	Статус работы насоса
0	Насос выключен и находится не в режиме управления ШИМ
≤ 10	Максимальная скорость
10 < ≤ 84	Изменяющаяся скорость от макс. до мин.
85 < ≤ 91	Минимальная скорость
91 < ≤ 95	Область гистерезиса вкл./выкл.
96 < ≤ 99	Насос выключен
100	Насос выключен и находится не в режиме управления ШИМ

Область гистерезиса на высоких значениях входного ШИМ-сигнала защищает насос от непреднамеренного выключения, обусловленного колебанием сигнала.

ШИМ-сигнал обратной связи

Обратная связь от насоса по выходному ШИМ-сигналу может дать информацию:

- статус работы;
- текущее потребление энергии (точность ± 2 % ШИМ-сигнала);
- предупреждения;
- аварии.

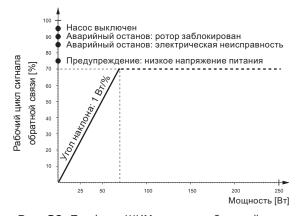


Рис. 30 Профиль ШИМ-сигнала обратной связи

Выходной ШИМ- сигнал [%]	Статус насоса	Приоритет
95	Насос выключен	1
90	Аварийный останов: ротор заблокирован	2
85	Аварийный останов: электрическая неисправность	3
75	Предупреждение: низкое напряжение питания	4
0-39	0-39 Вт (шаг: 1 % – 1 Вт)	5

Технические данные ШИМ-сигнала

Параметр	Символ	Значение
Диапазон частоты управляющего ШИМ- сигнала	f _{sx}	100- 4000 Гц
Диапазон напряжения управляющего ШИМ-сигнала (высокий уровень)	U _{BX.B}	4-24 B
Напряжение управляющего ШИМ-сигнала (низкий уровень)	U _{вх.н}	<1 B
Сила тока управляющего ШИМ-сигнала (высокий уровень)	I _{BX}	<10 mA
Коэффициент заполнения управляющего ШИМ-сигнала	d	0-100 %
Частота выходного ШИМ-сигнала от насоса	f _{вых}	75 Гц±5 %
Коэффициент заполнения выходного ШИМ- сигнала от насоса	d	0-100 %

Конструкция

Насос MASTER S имеет конструкцию «мокрого ротора». Ротор электродвигателя в насосах такой конструкции омывается перекачиваемой жидкостью.

Вода в таких насосах выполняет функции:

- 1. Смазки подшипников электродвигателя и удаления продуктов износа.
- 2. Охлаждения обмоток статора.

Конструктивные преимущества насоса MASTER S:

- Энергоэффективный двигатель нового поколения на постоянных магнитах.
- Керамические вал и подшипники с одинаковым коэффициентом температурного расширения обеспечивают повышенную надёжность конструкции.
- Упорный подшипник выполнен из графита увеличивает срок службы насоса.
- Гильза ротора и упорный подшипник в целях защиты от коррозии выполнены из нержавеющей стали.
- Корпус насоса изготавливается из чугуна с нанесённым защитным нанокерамическим покрытием.
- Упрощённое подключение насоса к сети питания при помощи Мастер Штекера.

В конструкции используется четырехполюсный синхронный электродвигатель с постоянными магнитами и частотным преобразователем. Предусмотрен простой доступ к клеммной коробке и компенсатор натяжения кабеля. Электродвигатель соответствует Директиве по низковольтному напряжению (EN 60335-2-51). Электродвигатель защищен от коротких замыканий.

Электродвигатель защищен электроникой в блоке управления и не требует внешней защиты. Подключение насоса к сети

осуществляется с помощью Мастер Штекера, идущего в комплекте с ним.

Спецификация материалов

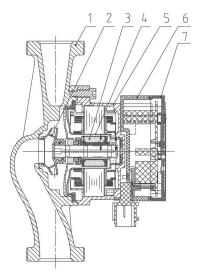


Рис. 31 Hacoc MASTER S

		1
Поз.	Наименование	Материал
1	Корпус насоса	Чугун с нанокерамическим покрытием
2	Рабочее колесо	Композит
3	Ротор в сборе	Нержавеющая сталь
4	Защитный кожух	Нержавеющая сталь
5	Корпус статора	Алюминиевый сплав
6	Основание клеммной коробки	Композит
7	Крышка клеммной коробки	Алюминиевый сплав + композит

Перечень оборудования

MASTER S

	Присоединительный	Монтажная длина,	Номинальная	Номинальный ток	Напряжение	
Модель насоса	размер	мм мощность мин/макс, (Вт)		мин/макс, (А)	230 B	
MASTER S 15-6	G 1"	130	5 - 39	0,05/0,35	•	
MASTER S 25-4		180	5 - 26	0,05/0,25	•	
MASTER S 25-6	C 1 1/2"	130	5 - 39	0,05/0,35	•	
MASTER S 25-6	G 1 1/2"	180	5 - 39	0,05/0,35	•	
MASTER S 25-7.5		180	5 - 52	0,05/0,42	•	
MASTER S 32-4		180	5 - 26	0,05/0,25	•	
MASTER S 32-6	G 2"	180	5 - 39	0,05/0,35	•	
MASTER S 32-7.5		180	5 - 52	0,05/0,42	•	

Штекер для MASTER S

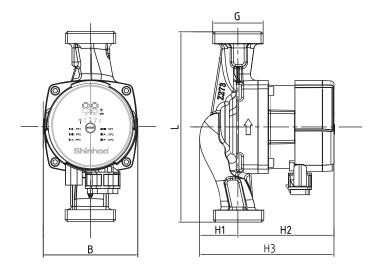
Рис. 32 Мастер Штекер

Наименование	Описание	
Мастер Штекер	Стандартное кабельное соединение для электрического подключения насоса Master	55311001

Стандартное кабельное соединение Мастер Штекер входит в комплект поставки насоса MASTER S. При необходимости его можно заказать отдельно.

Резьбовые трубные соединения (комплект)

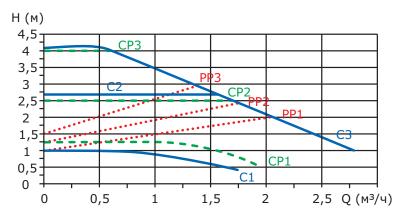
Рис. 33 Резьбовые трубные соединения (комплект)


В таблице указаны артикулы на один комплект. В комплект входит 2-е муфты, 2-е накидные гайки и 2-а уплотнительных кольца.

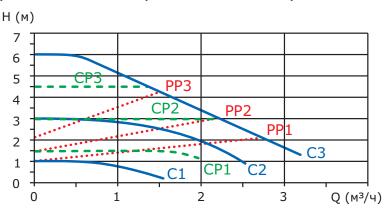
Наименование	Типоразмер насоса	Трубное присоединение	Муфта с внутренней резьбой	Материал	Артикул
Резьбовое трубное соединение (комплект) G 1"	MASTER S 15-xx	G 1" x Rp 3/4	Rp		55321001
Резьбовое трубное соединение (комплект) G 1 $\frac{1}{2}$ "	MASTER S 25-xx	G 1 ½" x Rp 1		Латунь	55321002
Резьбовое трубное соединение (комплект) G 2"	MASTER S 32-xx	G 2" x Rp 1 1/4			55321003

Резьбовое трубное соединение (комплект) входит в комплект поставки насоса MASTER S. При необходимости его можно заказать отдельно.

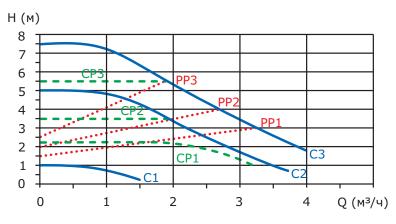
Габаритные размеры



Модель насоса	Размеры [мм]						
	L	В	H1	H2	Н3	G [дюйм]	
MASTER S 15-6	130	90				1"	
MASTER S 25-4	180					4.4.68	
MASTER S 25-6	130						
MASTER S 25-6	180			20		400	1 1/2"
MASTER S 25-7.5	180		38	90	128		
MASTER S 32-4	180						
MASTER S 32-6	180					2"	
MASTER S 32-7.5	180						

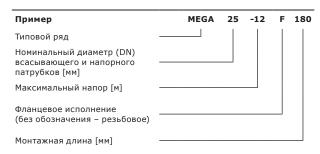


Расходно-напорные характеристики и технические данные


MASTER S 25-4 180 / MASTER S 32-4 180

MASTER S 15-6 130 / MASTER S 25-6 130 / MASTER S 25-6 180 / MASTER S 32-6 180

MASTER S 25-7,5 180 / MASTER S 32-7,5 180



6. Автоматические циркуляционные насосы MEGA

Рис. 34 Внешний вид насоса MEGA

Расшифровка типового обозначения

Области применения

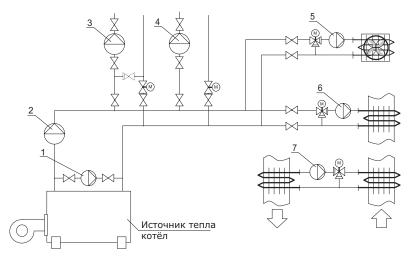


Рис. 35 Схема системы отопления

1. Насос контура конденсатора и драйкулера;

Насос котлового контура;
 Насос первичного контура;
 Насос в однотрубных и

воздушного отопления; 6. Насос в системах отопления

«тёплый пол»; 7. Системы регенерации и рекуперации тепла.

двухтрубных системах отопления; 4. Насос греющий контур системы горячего водоснабжения; 5. Насос теплоснабжение в системах

- 2. Насос контура потребителей (фанкойлы)
- 3. Насос систем холодоснабжения центральных кондиционеров

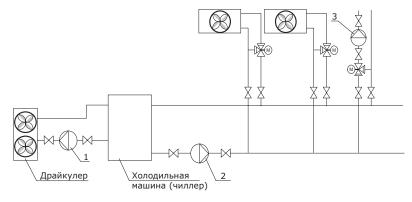


Рис. 36 Схема системы кондиционирования воздуха

Условия эксплуатации

Общие указания

Вода в системах отопления	Качество воды согласно местным стандартам, например CO 153-34.20.501-2003	
Вода, содержащая гликоль	Максимальная вязкость = 10 - 50 сСт ~ раствор 50 % воды / 50 % этиленгликоля при температуре -10 °C	

Рабочий диапазон

Параметр	MEGA	
Максимальный расход, Q	10 м³/ч	
Максимальный напор, Н	10 метров	

Температура перекачиваемой жидкости

От -30 до +110 °C.

Условия окружающей среды

Температура окружающей среды во время работы	от 0 до +40 °C	
Температура окружающей среды при хранении и транспортировке	от -40 до +70 °C	
Относительная влажность воздуха	Макс. 95 %	

Максимальное допустимое рабочее давление

PN 10: 10 бар / 1,0 MΠa.

Минимальное давление на входе насоса

Для предотвращения кавитационного шума и повреждения подшипников при эксплуатации насоса на его всасывающем патрубке должно поддерживаться следующее минимальное относительное давление.

Температура жидкости	≤85 °C	90 °C	110 °C
Давление на	0,5 м	2,8 м	10 м
входе	0,05 бар	0,28 бар	1 бар

Примечание: сумма фактического давления на входе и давления насоса, работающего при закрытом клапане, всегда должна быть ниже максимально допустимого рабочего давления в системе.

Значения относительных минимальных давлений указаны для насосов, установленных на высоте до 300 м над уровнем моря. Для насосов, устанавливаемых выше 300 м над уровнем моря, требуемое относительное давление на входе следует увеличивать на 0,01 бар или 0,001 МПа на каждые 100 м высоты. Насос МЕGA допустимо использовать только на высоте до 2000 м над уровнем моря.

Уровень звукового давления

Уровень звукового давления зависит от потребляемой мощности и не превышает 45 дБ (A).

Перекачиваемые жидкости

Насос предназначен для перекачивания чистых, неагрессивных жидкостей, не содержащих твёрдых включений или волокон, которые могут оказывать механическое или химическое воздействие на насос.

В отопительных системах вода должна удовлетворять требованиям норм качества сетевой воды для отопительных агрегатов, например, СО 153-34.20.501-2003.

Запрещается использовать насосы для перекачивания легковоспламеняющихся или взрывчатых жидкостей, таких как дизельное топливо и бензин.

Запрещается использование насоса для перекачки агрессивных жидкостей, таких как кислоты и морская вода.

Если насос в холодное время не эксплуатируется, нужно принять необходимые меры для предотвращения повреждений от воздействия низких температур.

Добавление в теплоноситель присадок с плотностью и/или кинетической вязкостью выше, чем у воды, снижает производительность насоса. Запрещается использовать примеси, которые могут отрицательно повлиять на работу насоса.

Подходит насос для конкретной жидкости или нет, зависит от нескольких факторов, наиболее важные из которых: содержание извести, значение pH, температура и содержание растворяющих веществ и масел.

Насос может применяться для перекачивания растворов этиленгликоля и воды в концентрации до 50 %. См. раздел «Общие указания».

Перекачивание смесей этиленгликоля ухудшает гидравлические характеристики насоса.

Конструкция

Насосы серии MEGA являются насосами с «мокрым» ротором, т.е. насос и двигатель составляют единый блок без торцевого уплотнения вала. В качестве смазки для подшипников используется перекачиваемая жидкость.

Насосы имеют следующие отличительные особенности:

- контроллер, встроенный в блок управления;
- панель управления на лицевой части насоса;
- отсутствие необходимости во внешней защите электродвигателя.

Электродвигатель и преобразователь частоты

Насос MEGA имеет электродвигатель с постоянными магнитами. Данный тип электродвигателя характеризуется повышенным КПД по сравнению с традиционно используемыми асинхронными двигателями с обмоткой типа «беличье колесо». Частота вращения двигателя задается

Присоединения насоса

Резьбовые трубные и фланцевые соединения.

встроенным частотным преобразователем.

Качество обработки поверхностей

Корпус насоса и головная часть насоса имеют катафорезное покрытие для лучшей коррозионной устойчивости.

Процесс окрашивания методом катафореза состоит из следующих этапов:

- очистка щелочами;
- предварительная обработка фосфатом цинка;
- катодное электроосаждение (катафорез);
- сушка лакокрасочной плёнки при температуре 200–250 °C.

Монтаж

Насосы серии MEGA предназначены для установки в помещениях.

Вал установленного насоса должен иметь горизонтальное положение.

Насос может устанавливаться как на горизонтальные, так и на вертикальные трубопроводы.

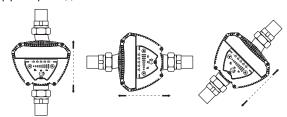
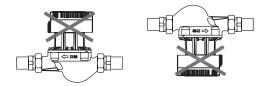



Рис. 37 Допустимое расположение вала насоса

Рис. 38 Недопустимое расположение вала насоса

Стрелка на корпусе насоса показывает направление потока жидкости.

Блок управления должен находиться в горизонтальном положении.

Насос следует устанавливать таким образом, чтобы на него не воздействовала масса трубопровода. Насос может монтироваться в подвесном положении непосредственно на трубопровод при условии, что трубопровод может выдержать его массу.

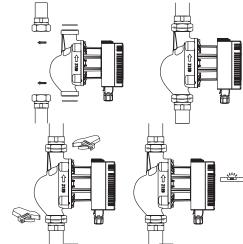


Рис. 39 Монтаж насоса

Для обеспечения достаточного охлаждения электродвигателя и электронного оборудования соблюдайте следующие требования:

- Насос нужно устанавливать так, чтобы обеспечить его достаточное охлаждение.
- Температура окружающей среды не должна превышать 40 °C.

Параметры электрооборудования

Тип насоса	MEGA		
Степень защиты корпуса	IP 42		
Класс изоляции	Н		
Напряжение электропитания	1 x 230 B ± 10 % 50 Гц, PE		
Цифровой вход	шим		
цифровои вход	0-10B		
Электромагнитная совместимость	EN61000-6-1 и EN61000-6-3		

Подключение электрооборудования

Подключение насоса к сети осуществляется с помощью Штекера Про, идущего в комплекте с ним.

Подключение к электросети и защите выполняется в соответствии с местными нормами и правилами.

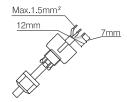
- Насос должен быть подключен к внешнему сетевому выключателю.
- Насос всегда должен иметь соответствующее нормам заземление.
- Внешняя защита электродвигателя насоса не требуется.

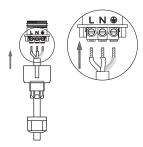
Примечание: количество пусков и остановов насоса путём подачи и отключения питающего напряжения не должно превышать четыре раза в течение одного часа.

Подключение насоса к электросети выполняется, как показано на рис. 40.

Кабели

Все кабели должны подключаться в соответствии с местными нормами.


Дополнительная защита


Если насос подключается к электроустановке, в которой электрический выключатель (размыкатель цепи с защитой при утечке на землю с контролем напряжения, устройство дифференциального тока (УДТ) или устройство защитного отключения (УЗО)) используется в качестве дополнительной защиты, то он должен срабатывать при наличии в токах замыкания на землю составляющей постоянного тока (пульсирующей составляющей постоянного тока).

Автомат защиты от тока утечки на землю должен быть промаркирован первым или обоими символами, приведёнными ниже:

Обозначение Описание	
[Высокочувствительный автомат защиты с функцией защиты при утечке на землю (УЗО), тип A, согласно IEC 60775
	Высокочувствительный автомат защиты с функцией защиты при утечке на землю (УЗО), тип В, согласно IEC 60775

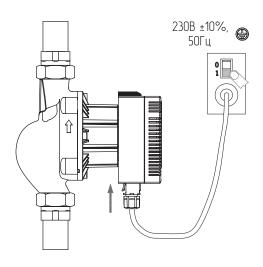


Рис. 40 Электроподключение насоса

Режимы управления

Насос обладает 19 режимами управления с автоматически изменяющейся скоростью вращения вала двигателя, 9 режимов с постоянной скоростью и режим под управлением внешнего контроллера по ШИМсигналу. Описание режимов представлено далее. Настройка режима работы должна быть выполнена в соответствии с типом системы (см. рис. 41). Начальные настройки - AUTO (саморегулирующий режим). Рекомендуемые настройки насоса приведены в таблице ниже. Выбор режима управления осуществляется путем нажатия кнопки на панели управления. (рис. 45). Выбранный режим управления отображается с помощью световых полей.

Α	Система теплого пола	AUTO	ПД (1-9)
В	Двухтрубные системы отопления	AUTO	ПР (1-9)
С	Однотрубные системы отопления	AUTO	ПД (1-9)

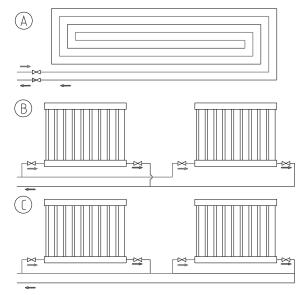
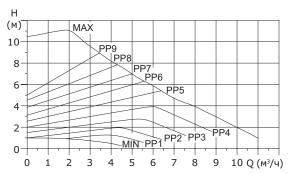
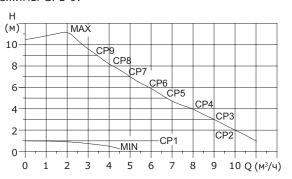



Рис. 41 Настройка режима работы

Режим управления пропорционального изменения давления (PP1-9)

Режим управления пропорционального изменения давления настраивает производительность насоса с учетом требуемого расхода в системе, но в пределе выбранной кривой рабочей характеристики – PP1-9. См. рис. 42.


Рис. 42 Кривые режима управления пропорционального изменения давления

В зависимости от типоразмера насосного агрегата доступны от одной до девяти кривых режима управления пропорционального давления. Выбор подходящего режима управления пропорционального изменения давления зависит от параметров системы и требуемого расхода. См. раздел «Рекомендации по выбору режима

Режим управления с постоянным значением давления (CP1-9)

управления».

Режим управления с постоянным значением давления настраивает производительность насоса с учетом требуемого расхода в системе, но в пределе выбранной кривой рабочей характеристики – СР1-9. См. рис. 43, где указаны режимы СР1-9.

Рис. 43 Кривые режима управления с постоянным значением давления.

В зависимости от типоразмера насосного агрегата доступны от одной до девяти кривых режима управления с постоянным значением давления.

Выбор подходящего режима управления с постоянным значением давления зависит от параметров системы и требуемого расхода. См. раздел «Рекомендации по выбору режима управления».

Режим управления при фиксированной частоте вращения (C1-9)

В данном режиме управления насос работает с фиксированной частотой вращения вне зависимости от требуемого расхода в системе. Насос работает в пределах выбранной кривой рабочей характеристики – C1-9. См. рис. 44.

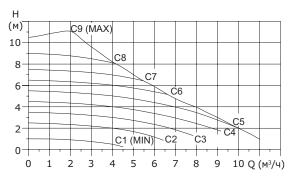


Рис. 44 Кривые режима управления при фиксированной частоте вращения

В зависимости от типоразмера насосного агрегата доступны от одной до девяти фиксированных частот вращения.

Выбор подходящего режима управления управления при фиксированной частоте вращения зависит от параметров системы и требуемого расхода. См. раздел «Рекомендации по выбору режима управления».

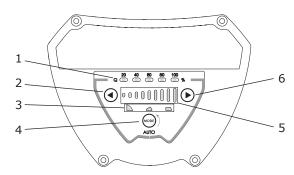


Рис. 45 Элементы панели управления

Поз.	Описание
1	Текущий расход в % от Мах.
2	Клавиша уменьшения скорости
3	Индикация режимов работы
4	Клавиша выбора режимов управления
5	Индикация текущей скорости работы
6	Клавиша увеличения скорости

Режим управления по ШИМсигналу

Для передачи ШИМ-сигнала используется входящий в комплект сигнальный кабель со штекером. Подключение штекера осуществляется к соответствующему разъему, расположенному на блоке управления (см. 46).

Последовательность действий:

- 1. Отключить насос от сети.
- 2. Установить штекер сигнального кабеля в разъем.
- 3. Подключить сигнальный кабель к внешнему котроллеру.

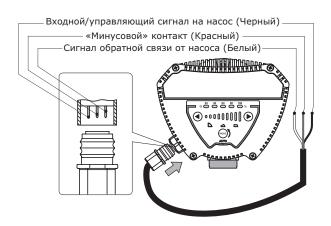


Рис. 46 Схема подключения ШИМ-сигнала

Краткое описание режимов управления

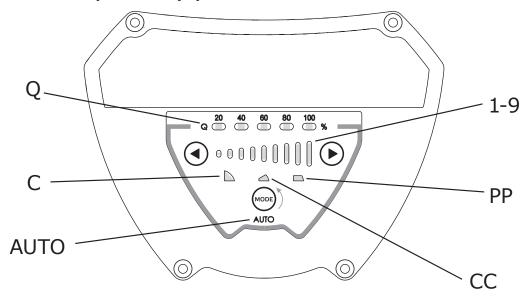


Рис. 47 Режимы управления насоса в зависимости от рабочих характеристик

Настройка	Кривая характеристики насоса	Назначение
РР1-5 для модели хх-6	Кривые режимов управления пропорционального изменения давления	Рабочая точка насоса будет смещаться вверх или вниз по одной из 5 кривых режима управления пропорционального изменения давления в зависимости от требуемого расхода в системе. Напор (давление) падает при снижении требуемого расхода в системе и увеличивается при повышении.
РР 1-7 для модели хх-8	Кривые режимов управления пропорционального изменения давления	Рабочая точка насоса будет смещаться вверх или вниз по одной из 7 кривых режима управления пропорционального изменения давления в зависимости от требуемого расхода в системе. Напор (давление) падает при снижении требуемого расхода в системе и увеличивается при повышении.
PP 1-9 для модели xx-10	Кривые режимов управления пропорционального изменения давления	Рабочая точка насоса будет смещаться вверх или вниз по одной из 9 кривых режима управления пропорционального изменения давления в зависимости от требуемого расхода в системе. Напор (давление) падает при снижении требуемого расхода в системе и увеличивается при повышении.
СР 1-5 для модели хх-6	Кривые режимов управления постоянным значением давления	Рабочая точка насоса будет удаляться или приближаться по одной из 5 кривых режима управления с постоянным значением давления в зависимости от требуемого расхода в системе. Напор (давление) остаётся постоянным вне зависимости от требуемого расхода в системе.
СР1-7 для моделей хх-8	Кривые режимов управления постоянным значением давления	Рабочая точка насоса будет удаляться или приближаться по одной из 7 кривых режима управления с постоянным значением давления в зависимости от требуемого расхода в системе. Напор (давление) остаётся постоянным вне зависимости от требуемого расхода в системе.
СР 1-9 для моделей xx-10	Кривые режимов управления постоянным значением давления	Рабочая точка насоса будет удаляться или приближаться по одной из 9 кривых режима управления с постоянным значением давления в зависимости от требуемого расхода в системе. Напор (давление) остаётся постоянным вне зависимости от требуемого расхода в системе.
С 1-5 для моделей хх-6	Кривые режимов управления при фиксированной частоте вращения	Насос работает по одной из 5 постоянных кривых характеристики, т. е. с постоянной частотой вращения.
С 1-7 для моделей хх-8	Кривые режимов управления при фиксированной частоте вращения	Насос работает по одной из 7 постоянных кривых характеристики, т. е. с постоянной частотой вращения.
С 1-9 для моделей xx-10	Кривые режимов управления при фиксированной частоте вращения	Насос работает по одной из 9 постоянных кривых характеристики, т. е. с постоянной частотой вращения.
Режим Авто	Множество кривых пропорционального изменения давления	Рабочая точка насоса будет смещаться вверх или вниз по одной из выбранных автоматически кривых в зависимости от требуемого расхода в системе. Напор (давление) падает при снижении требуемого расхода в системе и увеличивается при повышении. Автоматика насоса выбирает кривую самостоятельно, ручная настройка не требуется.

КАТАЛОГ ПРОДУКЦИИ **SHINHOO**

Рекомендации по выбору режима управления

Применение в гидравлических системах	Выберите этот способ управления:
В системах с относительно большими потерями давления в распределительных трубопроводах и в системах кондиционирования и охлаждения воздуха.	
• Двухтрубные системы отопления с терморегулирующими клапанами и:	Режим управления пропорционального
– с распределительными трубопроводами большой протяжённости;	изменения давления
- с сильно дросселирующими балансировочными клапанами;	H
– с регуляторами перепада давления;	
 со значительным потерями давления в отдельных элементах системы, определяющим общий расход воды (напр., в нагревательном котле, теплообменнике и распределительном трубопроводе первичного контура). 	
• Насосы первичного контура в системах со значительным падением давления в первичном контуре.	
• Системы кондиционирования воздуха	
– с теплообменниками (фанкойлами);	Q
- с охлаждающими потолками;	
- с охлаждающими поверхностями.	
В системах с относительно небольшими потерями давления в распределительных трубопроводах. Ф. Двухтрубные системы отопления с терморегулирующими клапанами: рассчитанные на естественную циркуляцию; с незначительными потерями давления в отдельных элементах системы, определяющих общий расход воды (например, в нагревательном котле, теплообменнике и распределительном трубопроводе до первичногоконтура); с большой разностью температур между подающим и обратным трубопроводом (например, центральное теплоснабжение). Системы отопления типа «теплый пол» с терморегулирующими клапанами. Однотрубные системы отопления с терморегулирующими клапанами или балансировочными клапанами трубопровода. Насосы первичного контура в системах с незначительными потерями давления в первичном контуре.	Режим управления с постоянным значением давления H
Насос также может переключаться в режим эксплуатации в соответствии с максимальной или минимальной характеристикой, т.е. в режим, аналогичный режиму эксплуатации нерегулируемого насоса:	Режим управления при фиксированной частоте вращения
 Режим работы по максимальной характеристике следует выбирать в периоды, когда необходим максимальный расход. 	
 Режим работы по минимальной характеристике следует выбирать в периоды, когда необходим минимальный расход. 	Q

Перечень оборудования

MEGA

	Присоединительный		Номинальная	Номинальный ток	Напряжение
Модель насоса	размер	Монтажная длина, мм	мощность мин/макс, (Вт)	мин/макс, (А)	230 B
MEGA 25-8	C 1 1/2"	180	8 - 130	0,08/0,9	•
MEGA 25-12	G 1 1/2"	180	10 - 185	0,1/1,25	•
MEGA 32-8	G 2"	180	8 - 130	0,08/0,9	•
MEGA 32-12	0.2	180	10 - 185	0,1/1,25	•
MEGA 40-6F	DN40	220	6 - 90	0,06/0,63	•
MEGA 40-10F	DN40	220	10 - 185	0,1/1,25	•

Штекер для MEGA

Рис. 48 Штекер Про

Наименование	Описание	Артикул
Штекер Про	Стандартное кабельное соединение для электрического подключения насоса MEGA	55311002

Стандартное кабельное соединение Штекер Про входит в комплект поставки насоса MEGA. При необходимости его можно заказать отдельно.

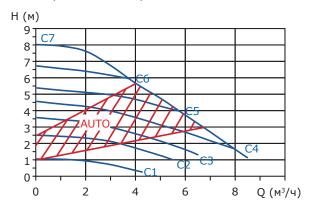
Резьбовые трубные соединения (комплект)

Рис. 49 Резьбовые трубные соединения (комплект)

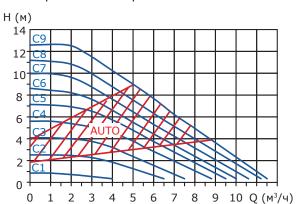
В таблице указаны артикулы на один комплект. В комплект входит 2-е муфты, 2-е накидные гайки и 2-а уплотнительных кольца.

Наименование	Типоразмер насоса	Трубное присоединение	Муфта с внутренней резьбой	Материал	Артикул
Резьбовое трубное соединение (комплект) G 1 ½"	MEGA 25-xx	G 1 ½" x Rp 1	Rp		55321002
Резьбовое трубное соединение MEGA 32-xx G 2" x Rp 1 1/4 (комплект) G 2"			Латунь	55321003	

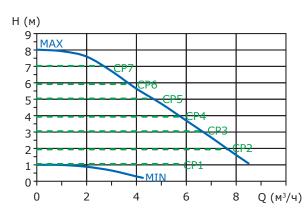
Резьбовое трубное соединение (комплект) входит в комплект поставки насоса MEGA с резьбовым присоединением. При необходимости его можно заказать отдельно.

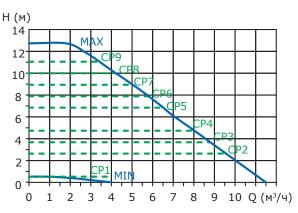


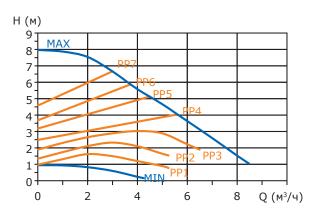
Расходно-напорные характеристики и технические данные

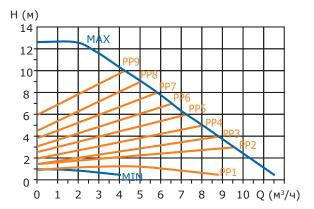

MEGA 25-8 180

MEGA 25-12 180

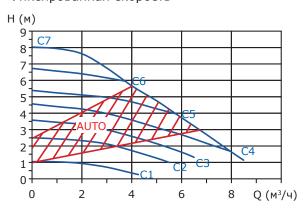

Фиксированная скорость

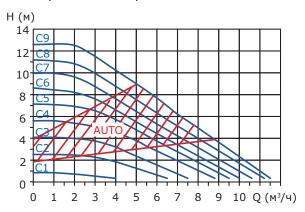

Фиксированная скорость


Постоянное давление

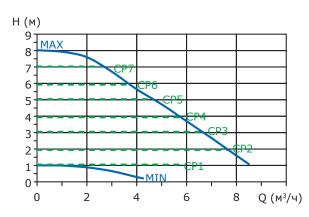

Постоянное давление

Пропорциональное давление

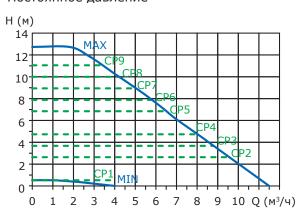

Пропорциональное давление

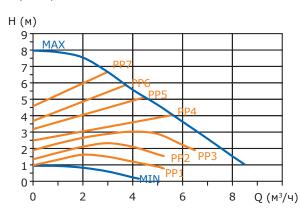

MEGA 32-8 180

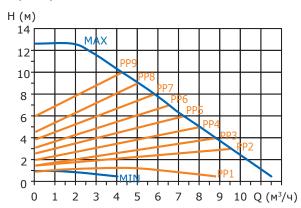
Фиксированная скорость



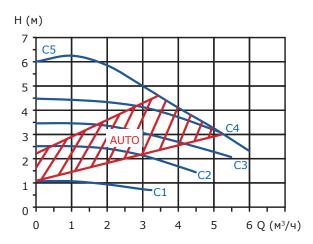
MEGA 32-12 180

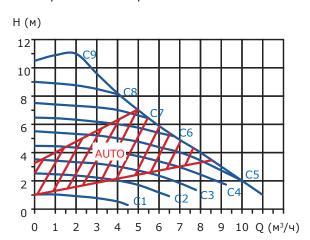

Фиксированная скорость


Постоянное давление

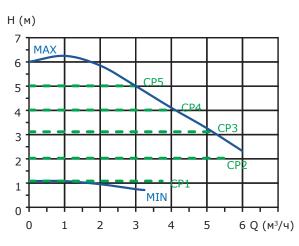

Постоянное давление

Пропорциональное давление

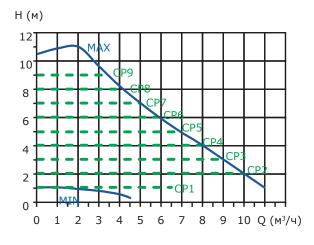

Пропорциональное давление

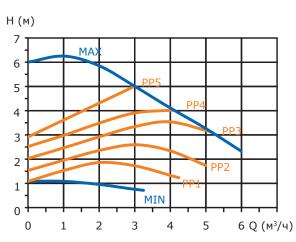

MEGA 40-6F 220

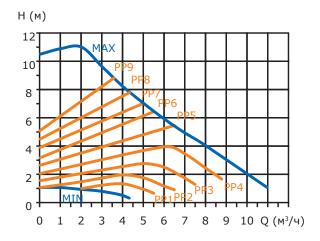
Фиксированная скорость



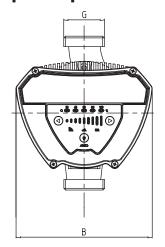
MEGA 40-10F 220

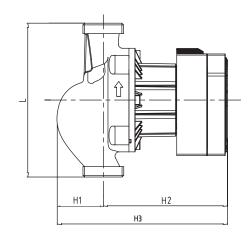

Фиксированная скорость

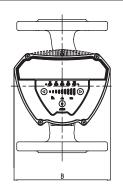

Постоянное давление

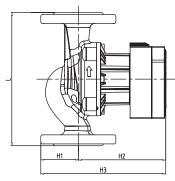

Постоянное давление

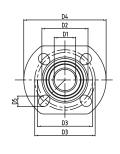
Пропорциональное давление




Пропорциональное давление

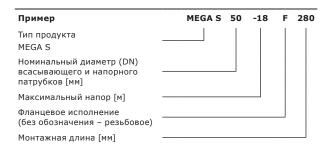



Габаритные размеры



Manage wasan	Размеры [мм]							
Модель насоса	L	В	H1	H2	Н3	G [дюйм]		
MEGA 25-8		160	55	144	199	G 1 1/2		
MEGA 25-12	180							
MEGA 32-8						6.3		
MEGA 32-12]					G 2		

Мололи изсест	Размеры насоса [мм]					Размеры фланца [мм]							
Модель насоса	L	В	H1	H2	Н3	G [дюйм]/DN	D1	D2	D3	D4	D5		
MEGA 40-6F	220	220	220	160	62	144	206	DNIAO	40	0.4	100/100	150	19
MEGA 40-10F	220	160	62	144	206	DN40	40	84	100/100	150	19		



7. Автоматические циркуляционные насосы MEGA S

Рис. 50 Внешний вид насоса MEGA S

Расшифровка типового обозначения

Область применения

- Системы отопления:
 - основной насос,
 - линии вторичного контура,
 - отопительные поверхности.
- Системы охлаждения и кондиционирования воздуха;
- Теплонасосные системы, использующие теплоту грунта;
- Системы, использующие энергию солнца. Циркуляционный насос MEGA S отлично подходит как для использования в новых системах, так и для замены насосов в существующих. Данная серия насосов позволяет избежать использования дорогих байпасных клапанов и аналогичных компонентов.

Системы отопления

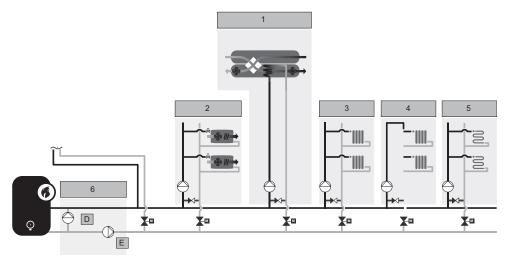


Рис. 51 Функциональная схема системы отопления в коммерческом здании

Поз.	Описание
1	Узел подготовки воздуха
2	Фанкойл
3	Двухтрубная радиаторная система отопления
4	Однотрубная радиаторная система отопления
5	Система тёплых полов
6	Насосы котла
6D	Насос рециркуляции котла
6E	Система с одним контуром

Далее приведены рекомендации по выбору режимов управления в зависимости от области применения и роли насоса в системе.

1. Узел подготовки воздуха

Обычно расстояние между насосом и узлом подготовки воздуха небольшое и потери, даже при переменном расходе, незначительны. В таком случае подходит режим управления с постоянным давлением.

2. Фанкойл

Как правило, фанкойлы располагаются на значительном расстоянии от насоса.

Исходя из количества фанкойлов и требований по расходу, потери давления могут сильно различаться.

В таких случаях рекомендуется использовать режим управления по пропорциональному давлению.

Если потери давления точно не известны, можно выбрать режим управления AUTO, который автоматически настроит производительность насоса в соответствии с требованиями системы.

3. Двухтрубная радиаторная система отопления

Исходя из того, что в данных системах наблюдаются переменные потери давления по причине удаленности радиаторов от насоса, рекомендуется использовать режим управления по пропорциональному давлению.

Если потери давления точно не известны, возможно выбрать режим управления AUTO, который автоматически настроит производительность насоса в соответствии с требованиями системы.

4. Однотрубная радиаторная система отопления

В однотрубных радиаторных системах отопления расход, как правило, постоянный, что также приводит к постоянным потерям давления. Поэтому насосам в данных системах лучше всего подходит режим управления по постоянному давлению.

Данные системы часто рассчитываются на определенный перепад температуры, в таком случае возможно отрегулировать рабочую точку режима управления по постоянному давлению до достижения требуемого перепада температуры.

5. Система тёплых полов

В таких системах расход зависит от количества обогреваемых комнат. Тем не менее, поскольку расстояние от насоса до трубопровода системы тёплых полов невелико, потери давления неизменны. Поэтому режим управления по постоянному давлению является оптимальным выбором.

6D. Насос рециркуляции котла

Поддержание постоянной температуры с внутренним датчиком

Если известна как температура воды в обратном трубопроводе системы, так и требуемая температура воды, поступающей обратно в котёл, возможно рассчитать требуемый расход, обеспечиваемый насосом рециркуляции котла. Температура расчетного потока воды задается прямо в насосе при настройке режима управления по постоянной температуре.

Поддержание постоянной температуры с внешним датчиком

Измерение и контроль требуемой минимальной температуры воды, возвращаемой в котёл, может осуществляться внешним датчиком, смонтированным максимально близко к котлу. Требуемое значение температуры может быть напрямую задано в насосе, при настройке режима управления по постоянной температуре.

Поддержание постоянного перепада температуры

Для обесепечения защиты котла от превышения допустимого перепада температуры насосом рециркуляции котла подходит режим управления с поддержанием постоянного перепада температуры. Независимо от изменений нагрузки, перепад температуры будет поддерживаться на требуемом уровне. Для реализации данной схемы требуется внешний датчик температуры.

6Е. Система с одним контуром

Данные насосы характеризуются тем, что могут работать при больших колебаниях расхода. В зависимости от расстояния между насосом и последним отводом, обслуживаемым насосом, можно выбрать режим регулирования по постоянному или пропорциональному давлению.

Как правило, регулирование по пропорциональному давлению является наилучшим вариантом, если требуемый напор превышает 5 м или расстояние между насосом и последним отводом превышает 10 м.

С другой стороны, если колебания потерь давления ограничены из-за того, что все отводы подсоединены ближе к насосу, рекомендуется режим регулирования по постоянному давлению.

Системы охлаждения

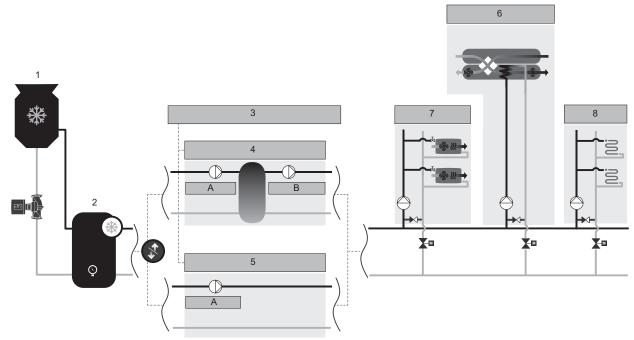


Рис. 52 Функциональная схема системы охлаждения в коммерческом здании

Поз.	Описание
1	Градирня
2	Источник холода
3	Насос для циркуляции охлаждённой воды
4	Системы с первичным/вторичным контуром
4A	Насос первичного контура
4B	Насос вторичного контура
5	Система с одним контуром
5A	Основной насос
6	Узел подготовки воздуха
7	Фанкойл
8	Системы холодных потолков

Далее приведены рекомендации по выбору режимов управления в зависимости от области применения и роли насоса в системе.

4A. Системы с первичным/ вторичным контуром, насос первичного контура

Постоянная температура

При известной рабочей температуре чиллера и необходимости поддерживать данную температуру в буферной емкости следует выбрать режим управления с поддержанием постоянной температуры.

В зависимости от места монтажа насоса может быть использован как встроенный датчик температуры, так и внешний.

Постоянная характеристика

В системах с постоянный нагрузкой на чиллер и известным перепадом температур возможно использовать режим управления с постоянной характеристикой. Насос настраивается таким образом, чтобы работа при постоянной характеристике обеспечивала требуемый перепад температур.

4В. Системы с первичным/ вторичным контуром, насос вторичного контура

Насосы вторичных контуров могут работать в различных условиях, в зависимости от нагрузки в системе. По этой причине рекомендуется использовать режим регулирования по пропорциональному давлению. Если потери напора составляют менее 5 м, то альтернативным вариантом является режим регулирования по постоянному давлению. Если потери давления точно не известны, можно выбрать режим управления AUTO, который автоматически настроит производительность

насоса в соответствии с требованиями системы.

5А. Система с одним контуром

Насосы данных систем характеризуются работой в условиях с различными потерями в зависимости от нагрузки в системе и её вида. По этой причине рекомендуется использовать режим регулирования по пропорциональному давлению. Если потери составляют менее 5 м, то альтернативным вариантом является режим регулирования по постоянному давлению. Если потери давления точно не известны, то возможно выбрать режим управления АUTO, который автоматически настроит производительность насоса в соответствии с требованиями системы.

6. Узел подготовки воздуха

При известном значении требуемого расхода в узле, подходящим является режим управления с постоянным расходом. Насос настроится под требуемое давление.

Подвод тепла контролируется с помощью клапана с электроприводом, см. рис. 52.

При известном значении потерь давления в узле, подойдет режим управления с постоянным давлением. Данный режим управления насоса обеспечит преоделение сопротивления в блоке.

7. Фанкойл

Использование фанкойлов характеризуется увеличением потерь при увеличении нагрузки. В таких случаях подходит режим управления по пропорциональному давлению.

8. Системы холодных потолков

В данных системах контуры индивидуально отбалансированы в соответствии с потерями давления. Таким образом независимо от длины контуров, потери в них одинаковы.

Поэтому даже при переменном расходе рекомендуемым является режим управления с постоянными давлением, ввиду постоянных потерь.

Системы, использующие теплоту грунта

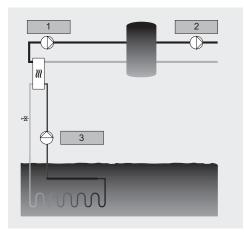


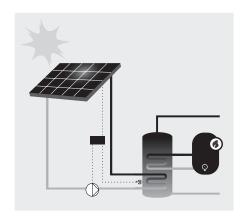
Рис. 53 Функциональная схема системы отопления на основе использования теплоты грунта

Поз.	Описание
1	Насос бойлера
2	Контур потребителя
3	Подземный контур

Далее приведены рекомендации по выбору режимов управления в зависимости от области применения и роли насоса в системе.

1. Насос бойлера

Насос запускается при падении температуры ниже заданного значения. Насос работает до достижения требуемой температуры в баке. Замкнутый контур не предусматривает изменений расхода, таким образом, в данном случае подходит режим управления с постоянной характеристикой.


2. Контур потребителя

Если насос контура потребления подключен к радиаторной системе, тогда подходящим будет режим управления с пропорциональным давлением. Если потребителем является система тёплых полов, тогда лучше подойдет режим управления с постоянным давлением.

3. Подземный контур

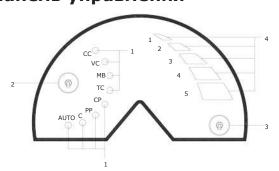
Замкнутый тип подземного контура не предусматривает изменений расхода, таким образом в данном случае подходит режим управления с постоянной характеристикой.

Системы, использующие энергию солнца

Рис. 54 Функциональная схема системы отопления на основе использования энергии солнца

Для основного насоса рекомендуется режим управления с постоянной характеристикой или согласно рекомендациям поставщика системы, использующей солнечную энергию.

Альтернативные режимы управления, такие как режим управления с постоянной температурой или разницей температур, также могут подойти если рекомендованы поставщиком системы, использующей солнечную энергию.



Режимы управления

Краткое описание режимов управления

Н AUTO • Рекомендуется для большинства систем отопления. • В процессе работы насос выполняет автоматическую регулировку в соответствии с фактической характеристикой системы. H A Пропорциональное давление • Используется в системах с относительно большими потерями давления в распределительных Hs трубопроводах. • Напор насоса будет возрастать пропорционально расходу в системе с целью компенсации высоких потерь давления в распределительных трубопроводах. H_{set} Н Постоянное давление • Рекомендуется использовать данный режим управления в системах с относительно низкими потерями давления. • Насос поддерживает постоянный напор, не зависящий от расхода в системе. Н Постоянная температура В системах с фиксированной характеристикой целесообразно регулирование насоса по постоянной температуре в обратном трубопроводе. Постоянная характеристика • Насос может переключаться в режим работы при фиксированной частоте вращения, т. е. в режим, аналогичный эксплуатации нерегулируемого насоса. • Настройка требуемой частоты вращения может выполняться в процентах от максимальной частоты вращения в диапазоне от минимума до 100%.

Панель управления

Поз.	Описание
1	Световая индикация режима работы насоса
2	Клавиша переключения режима управления
3	Клавиша переключения скорости
4	Световая индикация скорости

Кол-во нажатий на кнопку переключения режима	Настройка	Назначение
0 (Предустоновлен по умолчанию)	AUTO Mode	Рабочая точка насоса будет смещаться вверх или вниз по одной из выбранных автоматически кривых в зависимости от требуемого расхода в системе. Напор (давление) падает при снижении требуемого расхода в системе и увеличивается при повышении. Автоматика насоса выбирает кривую самостоятельно, ручная настройка не требуется.
1	C 1-3	Насос работает по одной из 3 постоянных кривых характеристики, т. е. с постоянной частотой вращения.
2	PP 1-3	Рабочая точка насоса будет смещаться вверх или вниз по одной из 3 кривых режима управления пропорционального изменения давления в зависимости от требуемого расхода в системе. Напор (давление) падает при снижении требуемого расхода в системе и увеличивается при повышении.
3	CP 1-3	Рабочая точка насоса будет удаляться или приближаться по одной из 3 кривых режима управления с постоянным значением давления в зависимости от требуемого расхода в системе. Напор (давление) остаётся постоянным вне зависимости от требуемого расхода в системе.
4	Tc 1-5	Насос может в любое время изменить свое рабочее состояние в соответствии с одной из пяти различных температурных шкал.
5	MB	Модуль передачи данных насоса по протоколу Modbus.
6	Vc	Насос регулирует свою скорость вращения в соответствии с диапазоном уровня входного аналогового сигнала 0-10 В.
7	Сс	Насос регулирует свою скорость вращения в соответствии с диапазоном уровня входного аналогового сигнала 4-20 мА.

Режимы работы

Нормальный

Насос работает в соответствии с выбранным режимом управления.

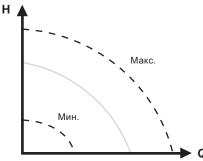
Примечание: Режим управления и установленное значение могут быть выбраны, даже если насос работает не в режиме Номальный.

Останов

Насос останавливается.

Минимальная характеристика

Режим работы по минимальной характеристике следует выбирать в периоды, когда необходим минимальный расход.


Такой рабочий режим, к примеру, может применяться для ручного переключения в ночной режим.

Минимальная характеристика может быть скорректирована путем определения рабочего диапазона насоса.

Максимальная характеристика

Режим работы по максимальной характеристике следует выбирать в периоды, когда необходим максимальный расход.

Режимы работы могут задаваться напрямую при помощи встроенных цифровых входов. Максимальная характеристика может быть скорректирована путем определения рабочего диапазона насоса.

Рис. 55 Максимальная и минимальная характеристики

Режимы управления

Заводские настройки

Насосы поставляются с заводской установкой в режим AUTO, что подходит для большинства систем. Установленное значение задаётся на заводе.

AUTO

Мы рекомендуем режим управления AUTO для большинства систем отопления, в частности, для систем с относительно большими потерями давления в распределительных трубопроводах,

давления в распределительных трубопроводах, а также в случае замены, где неизвестна рабочая точка для режима пропорционального давления.

Данный режим управления разработан специально для систем отопления. Не рекомендуется применять его в системах кондиционирования воздуха и охлаждения.

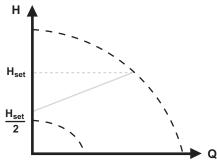
Характеристики и основные преимущества

- Насос выполняет автоматическую регулировку в соответствии с фактической характеристикой системы.
- Обеспечивает минимальное потребление энергии и низкий уровень шума.
- Уменьшает эксплуатационные расходы и повышает комфорт.

Пропорциональное давление

Регулирование по пропорциональному давлению подходит для систем с относительно большими потерями давления в распределительных трубопроводах и в системах кондиционирования воздуха и охлаждения:

- Двухтрубные системы отопления с терморегулирующими клапанами и:
 - с распределительными трубопроводами большой протяжённости;
 - с балансировочными клапанами сильно дросселированных трубопроводов;
 - с регуляторами перепада давления;
 - со значительными потерями давления в отдельных элементах системы, определяющими общий расход воды (например, в котле, теплообменнике и распределительном трубопроводе до первого ответвления).



- Насосы первичного контура в системах со значительным падением давления в первичном контуре.
- Системы кондиционирования воздуха:
 - с теплообменниками (фанкойлами);
 - с охлаждающими потолками;
 - с охлаждающими поверхностями.

Характеристики и основные преимущества

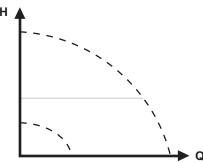
- Напор насоса возрастает пропорционально расходу в системе.
- Компенсирует большие потери давления в распределительных трубопроводах.

Технические характеристики

Рис. 56 Регулирование по пропорциональному давлению

Напор при закрытом клапане равен половине установленного значения $\mathbf{H}_{\mathrm{set}}.$

Постоянное давление


Регулирование по постоянному давлению подходит для систем с относительно небольшими потерями давления в распределительных трубопроводах:

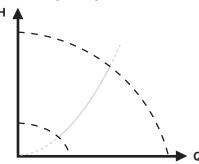
- двухтрубные системы отопления с терморегулирующими клапанами:
 - в системах с естественной циркуляцией;
 - с незначительными потерями давления в отдельных элементах системы, определяющими общий расход воды (например, в котле, теплообменнике и распределительном трубопроводе до первого ответвления);
 - переоборудованными для большого перепада температур между подающим и обратным трубопроводами (например, для централизованного теплоснабжения).
- Системы отопления типа «теплый пол» с терморегулирующими клапанами.
- Однотрубные системы отопления с терморегулирующими клапанами или балансировочными клапанами.
- Насосы первичного контура в системах с незначительным падением давления в первичном контуре.

Характеристики и основные преимущества

• Насос поддерживает постоянное давление, не зависящее от расхода в системе.

Технические характеристики

Рис. 57 Регулирование по постоянному давлению


Постоянная температура

Данный режим управления подходит для систем с фиксированной характеристикой, в которых целесообразно регулирование насоса в соответствии с постоянной температурой в обратном трубопроводе.

Характеристики и основные преимущества

• Поддерживается постоянная температура.

Технические характеристики

Рис. 58 Регулирование по постоянной температуре

В режиме постоянной температуры (TC), насос автоматически регулирует свою работу в зависимости от заданного значения температуры.

TC 1: насос поддерживает температуру теплоносителя 10 °C.

TC 2: насос поддерживает температуру теплоносителя 20 °C.

TC 3: насос поддерживает температуру теплоносителя 30 °C.

TC 4: насос поддерживает температуру теплоносителя 40 °C.

TC 5: насос поддерживает температуру теплоносителя 50 °C.

TC 6: насос поддерживает температуру теплоносителя 60 °C.

TC 7: насос поддерживает температуру теплоносителя 70 °C.

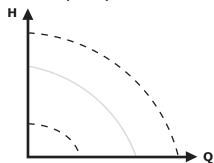
TC 8: насос поддерживает температуру теплоносителя 80 °C.

TC 9: насос поддерживает температуру теплоносителя 90 °C.

TC 10: насос поддерживает температуру теплоносителя 100 °C.

Если датчик зафиксирует температуру теплоносителя ниже указанного порога, насос увеличивает свою скорость для достижения заданного значения. При превышении этого порога скорость работы насоса уменьшается, поддерживая температуру на заданном уровне.

Постоянная характеристика


Регулирование по постоянной характеристике подходит для систем, где имеется потребность как в постоянном расходе, так и в постоянном напоре, а именно:

- поверхности нагрева;
- охлаждающие поверхности;
- системы отопления с 3-ходовыми клапанами;
- система кондиционирования воздуха с 3-ходовыми клапанами;
- насосы системы кондиционирования.

Характеристики и основные преимущества

- Если используется внешний контроллер, то насос может переключаться с одной постоянной характеристики на другую в зависимости от значения внешнего сигнала.
- В зависимости от ваших требований насос можно регулировать либо по максимальной, либо по минимальной характеристике.

Технические характеристики

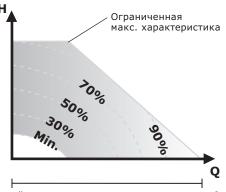


Рис. 59 Режим эксплуатации в соответствии с постоянной характеристикой

Насос может переключаться в режим работы при фиксированной частоте вращения, т. е. в режим, аналогичный эксплуатации нерегулируемого насоса. См. рис. *59*.

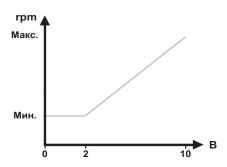
В зависимости от модели насоса можно задать требуемую частоту вращения в % от максимальной частоты. Диапазон управления зависит от минимальной частоты вращения, ограничения мощности и давления насоса.

Примечание: Если частота вращения насоса установлена в диапазоне между минимальным и максимальным значениями, то когда насос работает по максимальной характеристике, мощность и давление ограничены. Это означает, что максимальная производительность может быть достигнута при частоте вращения менее 100%. См. рис. 60.

Настройка частоты вращения в диапазоне от 0 до 100 %

Рис. 60 Ограничения по мощности и давлению, влияющие на максимальную характеристику

Насос также может переключаться в режим работы в соответствии с максимальной или минимальной характеристикой, т. е. в режим, аналогичный режиму эксплуатации нерегулируемого насоса:


- Режим работы по максимальной характеристике следует выбирать в периоды, когда необходим максимальный расход.
- Режим работы по минимальной характеристике следует выбирать в периоды, когда необходим минимальный расход. Такой рабочий режим, к примеру, может применяться для ручного переключения в ночной режим.

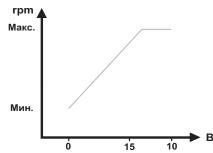
Эти режимы работы могут быть выбраны через цифровые входы.

Работа под управлением аналогового сигнала 0-10 В

- 1) Когда насос находится под управлением внешнего сигнала 0–10 В, его рабочее состояние изменяется на основе диапазона уровней входного сигнала. График зависимости скорости насоса от установленного значения сигнала 0-10 В приведен на рис. 61
- 2) При подключении управляющего сигнала 0–10 В перед регулировкой скорости необходимо вручную переключить насос в режим работы **VC**; Для того, чтобы выйти из режима управления 0-10 В необходимо также вручную перевести насос в режим работы на другом режиме.

Логика управления следующая:

Рис. 61 Зависимость скорости насоса от установленного значения сигнала 0-10 В


Входной аналоговый сигнал (В)	Рабочее состояние насоса
U≤1V	Останов
1V <u≤2v< td=""><td>При изменении аналогового сигнала с низкого на высокий, насос переходит в режим отключения; при изменении с высокого на низкий, насос начинает работать на минимальной скорости.</td></u≤2v<>	При изменении аналогового сигнала с низкого на высокий, насос переходит в режим отключения; при изменении с высокого на низкий, насос начинает работать на минимальной скорости.
2V <u≤3v< td=""><td>Насос работает на минимальной скорости.</td></u≤3v<>	Насос работает на минимальной скорости.
3V <u<10v< td=""><td>Скорость работы насоса линейно увеличивается; максимальная скорость достигается при значении сигнала 10 В.</td></u<10v<>	Скорость работы насоса линейно увеличивается; максимальная скорость достигается при значении сигнала 10 В.

Работа под управлением аналогового сигнала 4-20 мА

1) Когда насос находится под управлением внешнего сигнала 4–20 мА, его рабочее состояние изменяется на основе диапазона уровней входного сигнала. График зависимости скорости насоса от установленного значения сигнала 0-10 В приведен на рис. 62

2) При подключении управляющего сигнала 4–20 мА перед регулировкой скорости необходимо вручную переключить насос в режим работы СС; Для того, чтобы выйти из режима управления 4-20 мА необходимо также вручную перевести насос в режим работы на других режимах.

Логика управления следующая:

Рис. 62 Зависимость скорости насоса от установленного значения сигнала 4-20 мА

Входной аналоговый сигнал (В)	Рабочее состояние насоса
4≤I≤15	Скорость работы насоса линейно увеличивается; минимальная скорость достигается при значении сигнала 4 мА
15 <i≤20< td=""><td>Максимальная скорость насоса</td></i≤20<>	Максимальная скорость насоса
Точность распознавания	±1

Режим управления по протоколу ModBus

Определение адреса переменной информации о запуске (данные чтения)

Nō	Название параметра	Диапазон значения	Ед. измерения
1	Скорость вращения	0-5000	ед. в мин.
2	Температура жидкости	-230	°C
3	Код ошибки	0-65535	-
4	Сила тока	0-65535	В
5	Максимальная скорость	0-65535	ед. в мин.
6	Минимальная скорость	0-65535	ед. в мин.
7	Режим работы	0-65535	-
8	Положение скорости	0-65535	-
9	Версия прошивки	0-65535	-

Определение адреса настройки параметра

Nō	Название параметра	диапазон значения	
1	Скорость вращения	0-5000	ед. в мин.

Примечания:

Код ошибки	Режим работы	Положение скорости		
		1 —> 1 скорость		
0 —> нет ошибки	1 -> AUTO	2 —> 2 скорость		
1 —> повышенное напряжение	2 -> C	3 —> 3 скорость		
2 —> пониженное напряжение	3 -> PP	4 —> 4 скорость		
3 —> повышенный ток	4> CP	5 —> 5 скорость		
4 —> потеря фазы	5 —> TC	6 —> 6 скорость		
5 —> блокировка ротора	6> MB	7 —> 7 скорость		
6 —> недогруз	7 -> VC	8 —> 8 скорость		
7 —> повышенная температура	8 -> CC	9 —> 9 скорость		
		10 —> 10 скорость		

Условия эксплуатации

Общие рекомендации

Вода в системах отопления	Качество воды согласно местным стандартам
	Максимальная вязкость = 10-50 сСт ~ раствор 50% воды / 50% этиленгликоля при температуре -10 °C

Температура жидкости

Непрерывное перекачивание: от +2 до +110 °C.

Место монтажа

Насос предназначен для установки в помещениях. Монтаж насоса необходимо осуществлять в сухих условиях, без угрозы намокания, например, от окружающего оборудования.

Ввиду входящих в состав насоса элементов из нержавеющей стали, не рекомендуется осуществлять монтаж в таких местах как:

- Крытые плавательные бассейны, так как насос будет подвержен воздействию окружающей среды бассейна.
- Места с прямым и продолжительным воздействием морской атмосферы.
- Помещения с содержанием паров соляной кислоты (HCl) в воздухе, например, в результате утечки из баков или частом открывании или проветривании контейнеров.

Системы охлаждения

В системах охлаждения возможна конденсация на поверхности насоса. В некоторых случаях необходимо установить поддон.

Условия окружающей среды

Условия окружающей среды	
Температура окружающей среды во время эксплуатации	от 0 до +40 °C
	от -20 до +70 °C
- Paritation Pro-110	Макс. 95 %

При температуре окружающей среды ниже 0 °C должны выполняться следующие условия:

- Температура перекачиваемой жидкости +5 °C.
- Перекачиваемая жидкость содержит гликоль.
- Насос работает и не останавливается.

Максимальное рабочее давление

PN 10: 10 бар / 1,0 МПа

Испытательное давление

Насосы способны выдерживать испытательное давление в соответствии с требованиями стандарта EN 60335-2-51.

• PN 10: 12 бар / 1,2 МПа

В нормальном режиме эксплуатации запрещается использовать насос при давлении, превышающем значения, указанные на фирменной табличке.

Испытания давлением проводились тёплой водой при температуре 20 $^{\circ}$ C с антикоррозионными присадками.

Минимальное давление на входе

Для предотвращения кавитационного шума и повреждения подшипников при эксплуатации насоса на его всасывающем патрубке должно поддерживаться следующее минимальное относительное давление.

Температура жидкости	≤85 °C	95 °C	110 °C	
Парпошио на руспо	1 M	5 м	10 м	
Давление на входе	0,1 бар	0,5 бар	1 бар	

Примечание: Сумма фактического давления на входе и давления насоса, работающего при закрытой задвижке, всегда должна быть ниже максимально допустимого рабочего давления в системе.

Значения относительного минимального давления на входе указаны для насосов, установленных на высоте до 300 м над уровнем моря. Для насосов, устанавливаемых выше 300 м над уровнем моря, требуемое относительное давление на входе следует увеличивать на 0,1 бар/ 0,01 МПа на каждые 100 м высоты. Насос MEGA S допустимо использовать только на высоте до 1000 м над уровнем моря.

Работа на закрытую задвижку

Насосы MEGA S могут несколько дней работать с любой частотой вращения при закрытой задвижке без повреждения насоса. Однако рекомендуется работать с наименьшей возможной частотой вращения для снижения потерь энергии. Требования к минимальному расходу не установлены.

Примечание: Запрещается одновременно закрывать задвижки на входе и на выходе насоса, во время работы насоса одна из них должна быть открыта во избежание повышения давления.

Температура теплоносителя и окружающей среды не должна выходить за пределы указанного диапазона.

Перекачиваемые жидкости

Насос предназначен для перекачивания чистых, невязких, взрывобезопасных жидкостей, не содержащих твёрдых включений или волокон, которые могут оказывать механическое или химическое воздействие на насос.

В отопительных системах вода должна удовлетворять требованиям норм по качеству воды для отопительных систем.

Насосы серии MEGA S могут использоваться для перекачивания растворов гликоля и воды с концентрацией до 50%.

Пример водного раствора этиленгликоля: Максимальная вязкость: 10-50 сСт \sim раствор 50% воды / 50% этиленгликоля при температуре -10 °C.

При перекачивании растворов гликоля ухудшается максимальная характеристика и снижается производительность насоса, которая зависит от концентрации воды/этиленгликоля в смеси, а также от температуры жидкости. Чтобы не допустить изменения параметров раствора этиленгликоля, необходимо контролировать значения температуры жидкости, превосходящие рабочие; также необходимо сократить время работы при высоких температурах. Необходимо очищать и промывать систему перед добавлением в нее раствора этиленгликоля. Чтобы не допустить появления коррозии или образование известковых отложений, необходимо регулярно контролировать состояние раствора этиленгликоля. При необходимости дополнительного разбавления этиленгликоля следует соблюдать инструкции, изложеные

в руководстве поставщика этиленгликоля.

Данные электрооборудования

Тип насоса	MEGA S
Степень защиты	IPX4D (EN 60529)
Класс изоляции	н
Напряжение питания	1 × 230 B ± 10 % 50 Гц, РЕ
Цифровой вход	0-10 B
Аналоговый вход	4-20 MA
	0–10 В пост. тока
Вход шины связи	Modbus RTU
Ток утечки	$I_{\text{yterskin}} < 3.5 \text{ MA}$
	Токи утечки измеряются в соответствии со стандартом EN 60335-1
ЭМС	Применяемые стандарты: EN61000-3-2, EN61000-6-3, EN61800-3-3, EN55014-1 и EN55014-2
Cos φ	Насосы оснащены встроенным модулем активного PFC (контроль коэффициента мощности), обеспечивающим значения соs ф от 0,98 до 0,99 , т. е. очень близкие к 1

Уровень звукового давления

Уровень звукового давления насоса зависит от потребляемой мощности. Максимальный уровень звукового давления – 65 дБ(A).

Монтаж

Монтаж механической части

Насосы серии MEGA S предназначены для установки в помещениях.

Установите насос так, чтобы вал электродвигателя находился горизонтально. Насос может устанавливаться как на горизонтальные, так и на вертикальные трубопроводы.

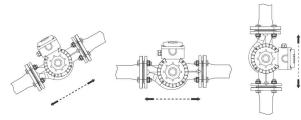


Рис. 63 Варианты монтажа

Стрелка на корпусе насоса показывает направление потока жидкости.

Блок управления должен находиться в горизонтальном положении.

Насос следует устанавливать таким образом, чтобы на него не воздействовала масса трубопровода.

Насос может монтироваться в подвесном положении непосредственно на трубопровод при условии, что трубопровод может выдержать его массу.

Для обеспечения достаточного охлаждения электродвигателя и электронного оборудования соблюдайте следующие требования:

- Насос следует устанавливать так, чтобы обеспечить его достаточное охлаждение.
- Температура окружающей атмосферы не должна превышать +40 °C.

Подключение электрооборудования

Подключение электрооборудования и защита должны быть выполнены в соответствии с местными нормами и правилами. Люди с электрокардиостимуляторами должны принять меры предосторожности при демонтаже и обслуживании электродвигателей с магнитными компонентами.

- Насос должен быть подключен к внешнему сетевому выключателю.
- Насос всегда должен иметь соответствующее нормам заземление.
- Внешняя защита электродвигателя насоса не требуется.
- Насос оснащен тепловой защитой от медленно нарастающих перегрузок и блокировки.
- При включении от источника питания запуск насоса происходит приблизительно через 5 секунд.

Примечание: Количество пусков и остановов насоса путём подачи и отключения питающего напряжения не должно превышать четырёх раз в час.

Насос имеет цифровой вход, который может использоваться для внешнего управления пуском/остановом насоса без необходимости включать и выключать электропитание.

Подключение насосов к сети питания следует выполнять в соответствии со схемами, приведенными в Паспорте, инструкции по монтажу и эксплуатации.

Кабели

Для подключения внешнего выключателя, цифрового входа, передачи сигналов от датчиков и сигналов установленных значений следует применять экранированные кабели.

- Все кабели должны быть устойчивы к температурам до +70 °C.
- Все кабели должны подключаться в соответствии с требованиями стандартов EN 60204-1 и EN 50174-2.

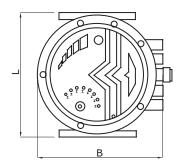
Дополнительная защита

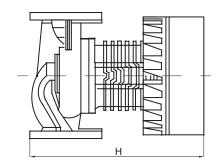
При монтаже насоса соблюдайте местные нормы и правила в отношении выбора устройств защитного отключения (УЗО/УДТ).

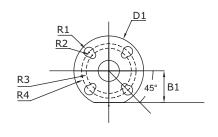
Перечень оборудования

Maran unasa	Присоединительный	Монтажная длина,	Номинальная	Номинальный ток	Напряжение	
Модель насоса	размер	мм	мощность мин/макс, (Вт)	мин/макс, (А)	230 B	
MEGA S 50-18F	DN 50	280	35 - 750	0,28/3,4	•	
MEGA S 65-12F	DN 65	342	35 - 750	0,28/3,4	•	

Расходно-напорные характеристики и технические данные MEGA S 50-18F




MEGA S 65-12F



Габаритные размеры

	Размеры насоса [мм]					Разм	еры фланца	[мм]		
	L	В	н	B1	D1	D2	R1	R2	R3	R4
MEGA S 50-18F	280	290	380	73,1	165	50	9,5	7	110	125
MEGA S 65-12F	342	266	380	73,5	185	68	9,5	7	130	145

8. Компактные насосы повышения давления PROMO

Рис. 64 Внешний вид насоса для повышения давления PROMO

Расшифровка типового обозначения

Пример	PROM	0 15	-9	Α
Типовой ряд				
Номинальный диаметр всасывающего и напорного патрубков (DN), [мм]				
Максимальный напор [дм]	-			
Автоматический пуск/останов по реле протока				

Области применения

Hacocы PROMO предназначены для повышения давления в существующей системе водоснабжения частных домов. В первую очередь они используются для создания напора перед водонагревателями (газовыми колонками и проточными водонагревателями), стиральными и посудомоечными машинами. PROMO могут также использоваться для повышения напора воды в душе или в других точках водоразбора. Hacocы PROMO используются в открытых системах, а также могут подключаться напрямую к сети водоснабжения. Насосы PROMO оснащены встроенным реле протока, которое используется для автоматического включения/отключения насоса при открытии крана в точке водоразбора. Насосы выпускаются в исполнении с чугунным корпусом, имеющим нанокерамическое покрытие, рабочее колесо из композитного материала.

Условия эксплуатации

Минимальное давление на всасывающем патрубке - 0,2 бара.

Насос должен находиться в неагрессивной и невзрывоопасной окружающей среде. Относительная влажность воздуха не более 95%.

Технические данные

Рабочий диапазон	Подача до 2,8 м³/ч
Напор	до 12 м
Напряжение питания	1 x 230 B
Температура перекачиваемой жидкости	от 2 до +60 °C
Температура окружающей среды	от 2 до +40 °C
Макс. рабочее давление	6 бар
Присоединение PROMO 15-9A	G 3/4"
Присоединение PROMO 15-12A	G 3/4"

Перекачиваемые жидкости

- пресная вода,
- хлорированная питьевая вода.

Насос не предназначен для перекачивания взрывоопасных жидкостей, таких как дизельное топливо, бензин и других подобных жидкостей.

Конструкция

В насосах этой серии используется конструкция «мокрого» ротора: ротор погружен в перекачиваемую жидкость и отделен от статора тонкой гильзой из нержавеющей стали. Таким образом, электродвигатель PROMO охлаждается перекачиваемой жидкостью и не имеет воздушного вентилятора, за счёт чего насос работает бесшумно. Уникальная система керамических подшипников обеспечивает насосу PROMO непревзойденную долговечность и надежность.

Hacoc укомплектован кабелем с вилкой Schuko. Электродвигатель насоса PROMO 15-9A оснащен защитой от короткого замыкания и защитой полного сопротивления. Электродвигатель PROMO 15-12A оснащен защитой от тепловых перегрузок. В обоих случаях нет необходимости предусматривать дополнительную внешнюю защиту электродвигателя.

Класс зашиты: ІР43. Класс изоляции: Н.

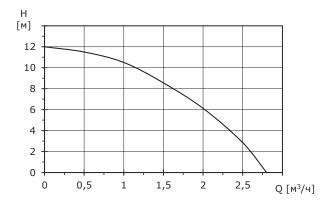
Режимы работы

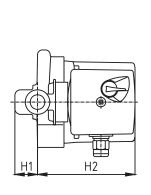
I Выключено

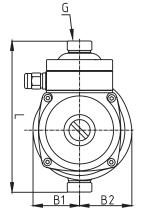
II Автоматический

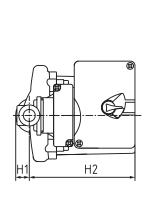
Насос автоматически включается от реле протока при расходе воды 2,5 л/мин. При уменьшении протока ниже этих значений, насос автоматически отключается. Очень важно, что в этом режиме насос отключается автоматически, если вода перестает поступать. Таким образом, он защищен от «сухого» хода. III Ручной

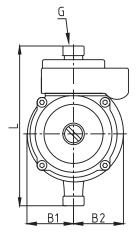
Насос принудительно работает независимо от реле протока.




Расходно-напорные характеристики и технические данные


PROMO 15-9A


H 8 6 4 2 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 Q [M³/4]


PROMO 15-12A

Габаритные размеры

Тип продукта	Размеры [мм]				Вес [кг]			
	L	H1	H2	B1	B2	G	Нетто	Брутто
PROMO 15-9A	160	23	103	50	54	3/4"	2,5	2,7
PROMO 15-12A	200	18	132	63	69	3/4"	2,5	2,7

Электротехнические параметры

Тип продукта	дукта Р1 _{макс.} [Вт] I _{1/1} [А]		
PROMO 15-9A	120	0,5	
PROMO 15-12A	270	1,2	

9. ПРОГРАММА ПОДБОРА

ПРОГРАММА ПОМОЖЕТ ВАМ:

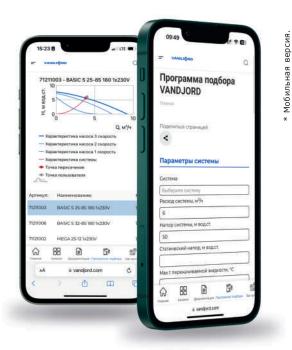
- Подобрать оборудование для различных областей применения;
- Найти информацию о любом оборудовании VANDJORD и Shinhoo.

ДОСТУПНО НА ВСЕХ УСТРОЙСТВАХ

ПОДБОР И ПОИСК ОБОРУДОВАНИЯ

ПРОСМОТР ПРАЙС-ЛИСТА

ПРОСМОТР СРОКОВ ПОСТАВКИ


РАСПЕЧАТКА ТЕХНИЧЕСКИХ ЛИСТОВ

ПОИСК ОБОРУДОВАНИЯ УДОБНЫМИ СПОСОБАМИ:

- Подбор оборудования по параметрам системы;
- Поиск существующего оборудования по названию или номеру (артикулу).

ДОПОЛНИТЕЛЬНЫЕ УДОБСТВА:

В нашей программе подбора вы можете узнать стоимость, срок поставки и технические данные оборудования компании VANDJORD. У вас есть возможность сохранить технический лист в формате PDF или передать документ ссылкой (ссылка продолжает работать 21 день с момента формирования технического листа).

ОТСКАНИРУЙТЕ QR-КОД, чтобы попробовать:

Компания VANDJORD уделяет большое внимание точности предоставляемой информации, содержащейся в распространяемом программном обеспечении, однако, допускает возможность полного или частичного несоответствия предоставленных данных вашему запросу. За анализ выбранного решения для вашего запроса компания VANDJORD ответственности не несет.

Для заметок

Для заметок

ООО «Вандйорд Групп» Адрес: 109544, г. Москва, ул. Школьная, д.39-41. Тел.: +7 (495) 730-36-55

E-mail: info.moscow@vandjord.com

Для использования в качестве ознакомительного материала. Возможны технические изменения. Товарные знаки, представленные в этом материале, в том числе Shinhoo, являются зарегистрированными товарными знаками, ООО «Вандйорд Групп». Все права защищены.

21111001/2725